हिंदी

The Sum of the Digits in a Two-digits Number is 9. the Number Obtained by Interchanging the Digits Exceeds the Original Number by 27. Find the Two-digit Number. - Algebra

Advertisements
Advertisements

प्रश्न

The sum of the digits in a two-digits number is 9. The number obtained by interchanging the digits exceeds the original number by 27. Find the two-digit number.

योग

उत्तर

Step 1: Write the conditions as equations

  1. The sum of the digits is 9: x + y = 9.
  2. The number obtained by interchanging the digits exceeds the original number by 27: 10y + x = 10x + y + 27.

Step 2: Simplify the second equation

10y + x = 10x + y + 27.

10y − y = 10x − x + 27,

9y = 9x + 27.

y = x + 3

Step 3: Solve the system of equations

  1. x + y = 9,
  2. y = x + 3

Substitute y = x + 3 into x + y = 9:

x + (x + 3) = 9

2x + 3 = 9

2x = 6 ⇒ x = 3

Substitute x = 3 into y = x + 3:

y = 3 + 3 = 6

10x + y = 10(3) + 6 = 36.

The two-digit number is 36.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Linear Equations in Two Variables - Practice Set 5.2 [पृष्ठ ९०]

APPEARS IN

बालभारती Algebra (Mathematics 1) [English] 9 Standard Maharashtra State Board
अध्याय 5 Linear Equations in Two Variables
Practice Set 5.2 | Q (7) | पृष्ठ ९०
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×