हिंदी

The sum of first q terms of an AP is (63q – 3q2). If its pth term is –60, find the value of p. Also, find the 11th term of its AP. - Mathematics

Advertisements
Advertisements

प्रश्न

The sum of first q terms of an AP is (63q – 3q2). If its pth term is –60, find the value of p. Also, find the 11th term of its AP.

योग

उत्तर १

Let Sq denote the sum of the first q terms of the AP. Then, 

S= 63q – 3q2

⇒ Sq–1 = 63(q – 1) –3(q – 1)

= 63q – 63 – 3 (q2 – 2q + 1) 

= –3q2 + 69q – 66

Suppose aq denote the qth term of the AP

∴ aq = Sq – Sq–1 

= (63q – 3q2) – (3q2 + 69q – 66) 

= –6q + 66       ...(1)

Now, 

ap = –60     ...(Given)

`\implies` –6p + 66 = –60      ...[From (1)]

`\implies` –6p = –60 – 66 = –126 

`\implies` p = 21 

Thus, the value of p is 21.

Putting q = 11 in (1), we get

a11 = –6 × 11 + 66 = –66 + 66 = 0

Hence, the 11th term of the AP is 0.

shaalaa.com

उत्तर २

\[S_q = 63q - 3 q^2 \]

We know

\[ a_q = S_q - S_{q - 1} \]

\[ \therefore a_q = 63q - 3 q^2 - 63\left( q - 1 \right) + 3 \left( q - 1 \right)^2 \]

\[ a_q = 66 - 6q\]

\[\text{ Now}, a_p = - 60\]

\[ \Rightarrow 66 - 6p = - 60\]

\[ \Rightarrow 126 = 6p\]

\[ \Rightarrow p = 21\]

\[ a_{11} = 66 - 6 \times 11 = 0\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Arithmetic Progression - Exercises 4

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 11 Arithmetic Progression
Exercises 4 | Q 38
आरडी शर्मा Mathematics [English] Class 10
अध्याय 5 Arithmetic Progression
Exercise 5.6 | Q 43 | पृष्ठ ५३

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×