हिंदी

The sum of first six terms of an arithmetic progression is 42. The ratio of the 10th term to the 30th term is 13. Calculate the first and the thirteenth term. - Mathematics

Advertisements
Advertisements

प्रश्न

The sum of first six terms of an arithmetic progression is 42. The ratio of the 10th term to the 30th term is `(1)/(3)`. Calculate the first and the thirteenth term.

योग

उत्तर

T10 : T30 = 1 : 3, S6 = 42
Let a be the first term and d be a common difference, then
`(a + 9d)/(a + 29d) = (1)/(3)`
⇒ 3a + 27d = a + 29d
⇒ 3a – a = 29d – 27d
⇒ 2a = 2d
⇒ a = d
Now, S6 = 42
= `n/(2)[2a + (n - 1)d]`

⇒ 42 = `(6)/(2)[2a + (6 - 1)d]`
⇒ 42 = 3[2a + 5d]
⇒ 14 = 2a + 5d
⇒ 14 = 2a + 5a     ...(∵ d = a)
⇒ 7a = 14
⇒ a = `(14)/(7)` = 2
∴ a = d = 2
Now, T13 = a + (n – 1)d
= 2 + (13 – 1) x 2
= 2 + 12 x 2
= 2 + 24
= 26
∴ 1st term is 2 and thirteenth term is 26.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Arithmetic and Geometric Progressions - Exercise 9.3

APPEARS IN

एमएल अग्रवाल Understanding ICSE Mathematics [English] Class 10
अध्याय 9 Arithmetic and Geometric Progressions
Exercise 9.3 | Q 15
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×