рд╣рд┐рдВрджреА

The Sums of the Deviations of a Set of N Values ЁЭСе1, ЁЭСе2, тАж . ЁЭСе11 Measured from 15 and тИТ3 Are тИТ 90 and 54 Respectively. Find the Val├╣E of N and Mean.F - Mathematics

Advertisements
Advertisements

рдкреНрд░рд╢реНрди

The sums of the deviations of a set of n values ЁЭСе1, ЁЭСе2, … . ЁЭСе11 measured from 15 and −3 are − 90 and 54 respectively. Find the valùe of n and mean.

рдЙрддреНрддрд░

(i)  Given `sum _ (i =1)^n (x_i + 5) = - 90`

⇒`( x+_1 -15) + ( x_2 -15) + ....... + ( x_n -15) = -90`

⇒`( x_1 + x_2 + .......... + x_n ) - (15 +15 + ...... +15) = -90`

⇒ `sumx -15n `= - 90       ........(1)

And `sum _(i=1)^n( x_i + 3) = 54`

⇒ `( x_1 - 3) + ( x_2 - 3) + ....... + ( x_n + 3) = 54`.

⇒ `( x_1 + x_2 + x_3 + .......... + x_n ) + (3 + 3 + 3 + ...... + 37) = 54`

⇒ `sumx + 3n = 54 `      ....(2)

By subtracting equation (1) from equation (2)

`sumx - 30 - sumx + 15n = 54 + 90`

⇒ 18n = 144

⇒`n = 144/ 18 = 8`

Put value of n in equation (1)

`sumx - 15 xx 8 = - 90`

⇒ `sumx - 120 =- 90`

⇒ `sumx = - 90 + 120 = 30`

∴`Mean = (sumx) / n = 30 / 8 = 15 /4` 
 

 

shaalaa.com
  рдХреНрдпрд╛ рдЗрд╕ рдкреНрд░рд╢реНрди рдпрд╛ рдЙрддреНрддрд░ рдореЗрдВ рдХреЛрдИ рддреНрд░реБрдЯрд┐ рд╣реИ?
рдЕрдзреНрдпрд╛рдп 24: Measures of Central Tendency - Exercise 24.1 [рдкреГрд╖реНрда резреж]

APPEARS IN

рдЖрд░рдбреА рд╢рд░реНрдорд╛ Mathematics [English] Class 9
рдЕрдзреНрдпрд╛рдп 24 Measures of Central Tendency
Exercise 24.1 | Q 22 | рдкреГрд╖реНрда резреж

рд╡реАрдбрд┐рдпреЛ рдЯреНрдпреВрдЯреЛрд░рд┐рдпрд▓VIEW ALL [1]

Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Use app×