Advertisements
Advertisements
प्रश्न
The surface area of a cube increases at the rate of 72 cm2/sec. Find the rate of change of its volume, when the edge of the cube measures 3 cm.
योग
उत्तर
Let a be the side of cube, s be the surface area and v be volume of cube.
Given, `(ds)/(dt)` = 72 cm2/sec and a = 3 cm
Surface area of cube = 6a2
⇒ `(ds)/(dt) = 12a · (da)/(dt)`
⇒ `(da)/(dt) = 72/(12a)`
= `6/a`
Now, volume of cube, v = a3
On differentiating w.r.t. t, we get
`(dv)/(dt) = 3a^2 · (da)/(dt) = 3a^2 · 6/a`
⇒ `(dv)/(dt) = 18a`
⇒ `((dv)/(dt))_(a = 3)`
= 18 × 3
= 54 cm3/sec
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?