Advertisements
Advertisements
प्रश्न
The truth value of negation of “London is in England” is ______
उत्तर
The truth value of negation of “London is in England” is False.
APPEARS IN
संबंधित प्रश्न
Write the following statement in symbolic form and find its truth value:
∀ n ∈ N, n2 + n is an even number and n2 - n is an odd number.
Write the truth values of the following.
24 is a composite number or 17 is a prime number.
If A = {3, 5, 7, 9, 11, 12}, determine the truth value of the following.
∃ x ∈ A such that 3x + 8 > 40
Which of the following sentence is the statement in logic? Justify. Write down the truth value of the statement:
4! = 24.
Which of the following sentence is the statement in logic? Justify. Write down the truth value of the statement:
If x is a whole number then x + 6 = 0.
Write the truth value of the following statement:
∀ n ∈ N, n2 + n is even number while n2 – n is an odd number.
State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.
You are amazing!
State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.
Two co-planar lines are either parallel or intersecting.
State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.
Give me a compass box.
State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.
It may rain today.
State which of the following sentence is a statement. Justify your answer if it is a statement. Write down its truth value.
Can you speak in English?
Choose the correct alternative :
Which of the following is an open statement?
Fill in the blanks :
The statement q → p is called as the ––––––––– of the statement p → q.
Which of the following sentence is a statement? In case of a statement, write down the truth value.
Every parallelogram is a rhombus.
Which of the following sentence is a statement? In case of a statement, write down the truth value.
0! = 1
If p, q, r are statements with truth values T, T, F respectively determine the truth values of the following.
∼ [(p → q) ↔ (p ∧ ∼ q)]
State the truth Value of x2 = 25
Using truth table prove that p ˅ (q ˄ r) ≡ (p ˅ q) ˄ (p ˅ r).
Without using truth table show that
(p ∨ q) ∧ (~ p ∨ ~ q) ≡ (p ∧ ~ q) ∨ ( ~ p ∧ q)
If p ↔ q and p → q both are true, then find truth values of the following with the help of activity
p ˄ q
p ↔ q and p → q both are true if p and q has truth value `square`, `square` or `square`, `square` p ˄ q i. If both p and q are true, then p ˄ q = `square` ˄ `square` = `square` ii. If both p and q are false, then p ˄ q = `square` ˄ `square` = `square` |