Advertisements
Advertisements
प्रश्न
The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x)) dx` is
विकल्प
2
`3/4`
0
– 2
MCQ
उत्तर
0
Explanation:
Let I = `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x)) dx` ......(1)
= `int_0^(pi/2) log ((4 + 3 sin (pi/2 - x))/(4 + 3 cos (pi/2 - x))) dx`
= `[because int_0^a f(x) dx = int_0^a f(a - x) dx]`
I = `int_0^(pi/2) log (4 + 3 cos x)/(4 + 3 sin x) dx` ......(2)
Adding (1) and (2)
2I = `int_0^(pi/2) (log (4 + 3 sin x)/(4 + 3 cos x) dx + log (4 + 3 cos x)/(4 + 3 sin x) dx)`
= `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x) xx (4 + 3 cos x)/(4 + 3 sin x)) dx`
= `int_0^(pi/2) log 1 dx`
= 0
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?