Advertisements
Advertisements
प्रश्न
The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1) dx` is
विकल्प
0
2
π
1
MCQ
उत्तर
π
Explanation:
Let I = `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1) dx`
`int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1) dx + int_(- pi/2)^(pi/2) dx = I_1 + int_(- pi/2)^(pi/2) dx`
I1 = `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1) dx`
Let `f(x) = x^3 + x cos x + tan^5x`
`f(-x) = (-x)^3 + (-x) cos(-x) + tan^5 (-x)`
= `- x^3 - 2 cos x - tan^5x`
= `- (x^3 + 2 cos x + tan^5x)`
= `- f(x)`
I1 = `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x) dx`
= 0 .......`[because f(-x) = - f(x)]`
Since, if `f` is an odd function,
Now, I = `I_1 + int_(- pi/2)^(pi/2) dx`
= `0 + int_(- pi/2)^(pi/2) dx`
= `[x]_(- pi/2)^(pi/2)`
= `pi/2 - (- pi/2)`
= π
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?