Advertisements
Advertisements
प्रश्न
The value of `lim_(n→∞)1/n sum_(r = 0)^(2n-1) n^2/(n^2 + 4r^2)` is ______.
विकल्प
`1/4 tan^-1(4)`
tan–1(4)
`1/4 tan^-1(2)`
`1/2 tan^-1(4)`
MCQ
रिक्त स्थान भरें
उत्तर
The value of `lim_(n→∞)1/n sum_(r = 0)^(2n-1) n^2/(n^2 + 4r^2)` is `underlinebb(1/2 tan^-1(4))`.
Explanation:
⇒ I = `lim_(n→∞)1/n sum_(r = 0)^(2n-1) n^2/(n^2 + 4r^2)`
⇒ I = `lim_(n→∞)1/n sum_(r = 0)^(2n-1) 1/n 1/(1 + 4(r/n)^2`
Put, `r/n→x, 1/n→dx, lim_(n→∞) 0/n` = 0, `lim_(n→∞) (2n - 1)/n` = 2
I = `int_0^2 1/(1 + 4x^2)dx`
⇒ I = `1/4int_0^2 (dx)/(1/4 + x^2)`
= `1/4 .2[tan^-1 2x]_0^2`
= `1/2tan^-1(4)`
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?