हिंदी

The value of limn→∞1n∑r=02n-1n2n2+4r2 is ______. -

Advertisements
Advertisements

प्रश्न

The value of  `lim_(n→∞)1/n sum_(r = 0)^(2n-1) n^2/(n^2 + 4r^2)` is ______.

विकल्प

  • `1/4 tan^-1(4)`

  • tan–1(4)

  • `1/4 tan^-1(2)`

  • `1/2 tan^-1(4)`

MCQ
रिक्त स्थान भरें

उत्तर

The value of  `lim_(n→∞)1/n sum_(r = 0)^(2n-1) n^2/(n^2 + 4r^2)` is `underlinebb(1/2 tan^-1(4))`.

Explanation:

⇒ I = `lim_(n→∞)1/n sum_(r = 0)^(2n-1) n^2/(n^2 + 4r^2)`

⇒ I = `lim_(n→∞)1/n sum_(r = 0)^(2n-1) 1/n 1/(1 + 4(r/n)^2`

Put, `r/n→x, 1/n→dx, lim_(n→∞) 0/n` = 0, `lim_(n→∞) (2n - 1)/n` = 2

I = `int_0^2 1/(1 + 4x^2)dx`

⇒ I = `1/4int_0^2 (dx)/(1/4 + x^2)`

= `1/4 .2[tan^-1 2x]_0^2`

= `1/2tan^-1(4)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×