Advertisements
Advertisements
प्रश्न
The velocities of a particle in SHM at positions x1 and x2 are v1 and v2 respectively, its time period will be ______.
विकल्प
2π `sqrt(((v_1^2-v_2^2))/((x_2^2-x_1^2)))`
2π `sqrt(((x_1^2+x_2^2))/((v_2^2-v_1^2)))`
2π `sqrt(((x_1^2-x_2^2))/((v_2^2-v_1^2)))`
2π `sqrt(((x_1^2+x_2^2))/((v_2^2+v_1^2)))`
उत्तर
The velocities of a particle in SHM at positions x1 and x2 are v1 and v2 respectively, its time period will be 2π `underlinebb(sqrt(((x_1^2-x_2^2))/((v_2^2-v_1^2))))`.
Explanation:
`"v"_1^2 = omega^2("A"^2-x_1^2)` ...(i)
`"v"_2^2 = omega^2("A"^2-x_2^2)` ...(ii)
Substituting equation (i) from equation (ii),
`"v"_2^2 = "v"_1^2 + omega^2(x_1^2-x_2^2)`
⇒ `"v"_2^2 - "v"_1^2 = omega^2(x_1^2-x_2^2)`
⇒ ω2 = `("v"_2^2 - "v"_1^2)/(x_1^2-x_2^2)`
⇒ `((2pi)/"T")^2 = ("v"_2^2 - "v"_1^2)/(x_1^2-x_2^2)`
⇒ ` T^2/(4pi^2) = (x_1^2-x_2^2)/("v"_2^2 - "v"_1^2)`
⇒ T = 2π `sqrt((x_1^2-x_2^2)/(v_2^2-v_1^2))`