Advertisements
Advertisements
प्रश्न
The weights of 50 apples were recorded as given below. Calculate the mean weight, to the nearest gram. by the Step Deviation Method.
Weights in grams | No. of apples |
80 - 55 | 5 |
85 - 90 | 8 |
90 - 95 | 10 |
95 - 100 | 12 |
100 - 105 | 8 |
105 - 110 | 4 |
110 - 115 | 3 |
योग
उत्तर
Weight in grams. | No. of apples | `bb(x_i)` | `bb(x_i - "A")` | `bb(u_i = (x_i - "A")/(5))` | `bb(f_iu_i)` |
80 - 85 | 5 | 82.5 | −15 | −3 | −15 |
85 - 90 | 8 | 87.5 | −10 | −2 | −16 |
90 - 95 | 10 | 92.5 | −5 | −1 | −10 |
95 - 100 | 12 | (97.5)A | 0 | 0 | 0 |
100 - 105 | 8 | 102.5 | 5 | 1 | 8 |
105 - 110 | 4 | 107.5 | 10 | 2 | 8 |
110 - 115 | 3 | 112.5 | 15 | 3 | 9 |
`sumf_i = 50` | `sumf_iu_i = -16` |
A = 97.5, `sumf_i = 50, sumf_iu_i = -16, "h" = 5`.
∴ Mean `bar"X" = "A" + (sumf_iu_i)/(sumf_i) xx "h"`
= 97.5 + `(-16)/(50) xx 5`
= 95·9.
= 96 g
shaalaa.com
Mean of Continuous Distribution
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
Find the mean of the following distribution by step deviation method:
Class interval | 20 - 30 | 30 - 40 | 40 - 50 | 50 - 60 | 60 - 70 | 70 - 80 |
Frequency | 10 | 6 | 8 | 12 | 5 | 9 |
Helping the step deviation method find the arithmetic mean of the distribution:
Variable (x) | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 |
Frequency(f) | 20 | 43 | 75 | 67 | 72 | 45 | 39 | 9 | 8 | 6 |
Using step-deviation method, calculate the mean marks of the following distribution
Class Interval | 50 - 55 | 55 - 60 | 60 - 65 | 65 - 70 | 70 - 75 | 75 - 80 | 80 - 85 | 85 - 90 |
Frequency | 5 | 20 | 10 | 10 | 9 | 6 | 12 | 8 |