Advertisements
Advertisements
प्रश्न
Answer the following:
There were two fixed points in the original Celsius scale as mentioned above which were assigned the number 0 °C and 100 °C respectively. On the absolute scale, one of the fixed points is the triple-point of water, which on the Kelvin absolute scale is assigned the number 273.16 K. What is the other fixed point on this (Kelvin) scale?
उत्तर १
The absolute zero or 0 K is the other fixed point on the Kelvin absolute scale.
उत्तर २
On Kelvin’s absolute scale, there is only one fixed point, namely, the triple-point of water and there is no other fixed point.
APPEARS IN
संबंधित प्रश्न
Define emissive power and coefficient of emmision of a body.
Two copper spheres of radii 6 cm and 12 cm respectively are suspended in an evacuated enclosure. Each of them are at a temperature 15°C above the surroundings. The ratio of their rate of loss of heat is.................
- 2:1
- 1:4
- 1:8
- 8:1
A metal ball cools from 64 °C to 50 °C in 10 minutes and to 42 °C in next 10 minutes. The ratio of rates of fall of temperature during the two intervals is _______.
What is the temperature of the triple-point of water on an absolute scale whose unit interval size is equal to that of the Fahrenheit scale?
If the temperature of a uniform rod is slightly increased by ∆t, its moment of inertia I about a line parallel to itself will increase by
Two bodies at different temperatures are mixed in a calorimeter. Which of the following quantities remains conserved?
A steel ball that is initially at a pressure of 1.0 × 105 Pa is heated from 20°C to 120°C, keeping its volume constant.
Find the pressure inside the ball. Coefficient of linear expansion of steel = 12 × 10–6 °C–1and bulk modulus of steel = 1.6 × 1011 Nm–2.
Two objects are said to be in thermal contact if they can exchange heat energy.
Two identical beakers A and B contain equal volumes of two different liquids at 60°C each and is left to cool down. Liquid in A has a density of 8 × 102 kg/m3 and specific heat of 2000 J kg-1 K-1 while the liquid in B has a density of 103 kg m-3 and specific heat of 4000 J kg-1 K-1. Which of the following best describes their temperature versus time graph schematically? (assume the emissivity of both the beakers to be the same.)
An earthen pitcher loses 1 gm of water per minute due to evaporation. If the water equivalent of the pitcher is 0.5 kg and the pitcher contains 9.5 kg of water, calculate the time required for the water in a pitcher to cool to 28°C from the original temperature of 30°C. Neglect radiation effects. The latent heat of vaporization in this range of temperature is 580 Cal/gm and the specific heat of water is 1 Cal/gm°C.