Advertisements
Advertisements
प्रश्न
Three vertices of a parallelogram ABCD are A ( 3, –1, 2), B (1, 2, –4) and C (–1, 1, 2). The coordinates of fourth vertex D are ______.
विकल्प
(1, 1, 1)
(1, –2, 8)
(2, –2, 6)
(1, 0, 2)
MCQ
रिक्त स्थान भरें
उत्तर
Three vertices of a parallelogram ABCD are A ( 3, –1, 2), B (1, 2, –4) and C (–1, 1, 2). The coordinates of fourth vertex D are (1, –2, 8).
Explanation:
Let D (x, y, z) be the required point, Then, the mid-point of diagonal BD is
`((x + 1)/2, (y + 2)/2, (z - 4)/2)`
Also, the mid-point of diagonal AC is
`((3 - 1)/2, (-1 + 1)/2, (2 + 2)/2)` i.e., (1, 0, 2)
But, the mid-points of the diagonals of a parallelogram always coincide.
∴ `(x + 1)/2` = 1, `(y + 2)/2` = 0 and `(z - 4)/2` = 2
So, x = 1, y = –2 and z = 8.
Hence, the required point is D(1, –2, 8).
shaalaa.com
Three Dimensional (3-D) Coordinate System
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?