Advertisements
Advertisements
प्रश्न
Use binomial theorem to evaluate the following upto four places of decimal
(0.98)–3
उत्तर
(0.98)–3
= (1 – 0.02)–3
= `1 - (-3) (0.02) + ((-3)(-3 - 1))/(2!) (0.02)^2 - ((-3)(-3 - 1)(-3 - 2))/(3!) (0.02)^3 + ......`
= `1 + 0.06 + (-3(-4))/2 (0.02)^2 - ((-3)(-4)(-5))/6 (0.02)^3 + ......`
= 1 + 0.06 + 0.0024 + 0.00008 + ….
= 1.06248
= 1.0625
APPEARS IN
संबंधित प्रश्न
State, by writing first four terms, the expansion of the following, where |x| < 1
(1 + x)−4
State, by writing first four terms, the expansion of the following, where |x| < 1
`(1 - x)^(1/3)`
State, by writing first four terms, the expansion of the following, where |x| < 1
(1 – x2)–3
State, by writing first four terms, the expansion of the following, where |x| < 1
`(1 + x)^(-1/5)`
State, by writing first four terms, the expansion of the following, where |x| < 1
(1 + x2)–1
State, by writing first four terms, the expansion of the following, where |b| < |a|
(a − b)−3
State, by writing first four terms, the expansion of the following, where |b| < |a|
(a + b)−4
State, by writing first four terms, the expansion of the following, where |b| < |a|
`("a" - "b")^(-1/4)`
Simplify first three terms in the expansion of the following
(1 + 2x)–4
Simplify first three terms in the expansion of the following
`(1 + 3x)^(-1/2)`
Simplify first three terms in the expansion of the following
`(5 + 4x)^(-1/2)`
Simplify first three terms in the expansion of the following
`(5 - 3x)^(-1/3)`
Use binomial theorem to evaluate the following upto four places of decimal
`sqrt(99)`
Use binomial theorem to evaluate the following upto four places of decimal
`root(3)(126)`
Use binomial theorem to evaluate the following upto four places of decimal
`root(4)(16.08)`
Show That C1 + C2 + C3 + .... Cn = 2n − 1
Show That C0 + 2C1 + 3C2 + 4C3 + ... + (n + 1)Cn = (n + 2)2n−1
Answer the following:
Expand `((2x)/3 - 3/(2x))^4`
Answer the following:
Using binomial theorem, find the value of `root(3)(995)` upto four places of decimals