हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएसएसएलसी (अंग्रेजी माध्यम) कक्षा १०

Use Euclid’s Division Algorithm to find the Highest Common Factor (H.C.F) of 10224 and 9648 - Mathematics

Advertisements
Advertisements

प्रश्न

Use Euclid’s Division Algorithm to find the Highest Common Factor (H.C.F) of 10224 and 9648

योग

उत्तर

To find H.C.F. 10224 and 9648, Using Euclid’s division algorithm.

We get

10224 = 9648 × 1 + 576

The remainder 576 ≠ 0.

Again using Euclid’s division algorithm

9648 = 576 × 16 + 432

Remainder 432 ≠ 0.

Again applying Euclid’s division algorithm

576 = 432 × 1 + 144

Remainder 144 ≠ 0.

Again using Euclid’s division algorithm

432 = 144 × 3 + 0

The remainder is zero.

∴ HCF = 144

The H.C.F. of 10224 and 9648 is 144.

shaalaa.com
Euclid’s Division Algorithm
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Numbers and Sequences - Exercise 2.1 [पृष्ठ ४३]

APPEARS IN

सामाचीर कलवी Mathematics [English] Class 10 SSLC TN Board
अध्याय 2 Numbers and Sequences
Exercise 2.1 | Q 6. (iii) | पृष्ठ ४३
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×