हिंदी

Using Bohr's quantization condition, what is the rotational energy in the second orbit for a diatomic molecule. (I = moment of inertia of diatomic molecule, h = Planck's constant) -

Advertisements
Advertisements

प्रश्न

Using Bohr's quantization condition, what is the rotational energy in the second orbit for a diatomic molecule. (I = moment of inertia of diatomic molecule, h = Planck's constant)

विकल्प

  • `"h"/(2"I"^2 pi)`

  • `"h"^2/(2"I" pi)`

  • `"h"/(2"I" pi^2)`

  • `"h"^2/(2"I"^2 pi^2)`

MCQ

उत्तर

`"h"^2/(2"I" pi)`

Explanation:

According to Bohr's quantization condition

`"L" = "nh"/(2pi) = (2"h")/(2pi) = "h"/pi`     [For 2nd orbit]

`"Rotational KE" = 1/2 "L"^2/"I" = 1/2 "h"^2/("I"pi^2)`

shaalaa.com
Bohr’s Atomic Model
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×