Advertisements
Advertisements
प्रश्न
Using the following data, construct Fisher’s Ideal Index Number and Show that it satisfies Factor Reversal Test and Time Reversal Test?
Commodities | Price | Quantity | ||
Base Year | Current Year | Base Year | Current Year | |
Wheat | 6 | 10 | 50 | 56 |
Ghee | 2 | 2 | 100 | 120 |
Firewood | 4 | 6 | 60 | 60 |
Sugar | 10 | 12 | 30 | 24 |
Cloth | 8 | 12 | 40 | 36 |
उत्तर
Commodities | Base Year | Current Year | p0q0 | p0q1 | p1q0 | p1q1 | ||
Price (p0) |
Quantity (q0) |
Price (p1) |
Quantity (q1) |
|||||
Wheat | 6 | 10 | 50 | 56 | 300 | 336 | 500 | 560 |
Ghee | 2 | 2 | 100 | 120 | 200 | 240 | 200 | 240 |
Firewood | 4 | 6 | 60 | 60 | 240 | 240 | 360 | 360 |
Sugar | 10 | 12 | 30 | 24 | 300 | 240 | 360 | 288 |
Cloth | 8 | 12 | 40 | 36 | 320 | 288 | 480 | 432 |
Total | 1360 | 1344 | 1900 | 1880 |
Fisher's ideal index number = `sqrt((sum"p"_1"q"_0)/(sum"p"_0"q"_0) xx (sum"p"_1"q"_1)/(sum"p"_0"q"_1)) xx 100`
`"P"_01^"F" = sqrt((1900 xx 1880)/(1360 xx 1344)) xx 100`
= `sqrt((3,572,000)/(1,827,840)) xx 100`
= `sqrt(1.9542) xx 100`
Factor reversal test
Test is satisfied when `"P"_01 xx "Q"_01 = (sum"p"_1"q"_1)/(sum"p"_0"q"_0)`
`"Q"_01 = sqrt((sum"p"_0"q"_1 xx sum"p"_1"q"_1)/(sum"p"_0"q"_0 xx sum"p"_1"q"_0))`
= `sqrt((1344 xx 1880)/(1360 xx 1900))`
`"P"_01 xx "Q"_01 = sqrt((1900 xx 1880)/(1360 xx 1344) xx (1344 xx 1880)/(1360 xx 1900)`
= `sqrt((1880 xx 1880)/(1360 xx 1360))`
= `1880/1360`
= `(sum"p"_1"q"_1)/(sum"p"_0"q"_0)`
Hence Fisher’s Ideal Index satisfies Factor reversal test.
APPEARS IN
संबंधित प्रश्न
Statements that are incorrect in relation to index numbers.
- An index number is a geographical tool.
- Index numbers measure changes in air pressure.
- Index numbers measure relative changes in an economic variable.
- Index numbers are specialized averages.
Complete the Correlation:
__________ : Single variable :: Composite index : Group of variables
Construct Quantity index number from the given data:
Commodity | A | B | C | D | E |
Base year quantities | 170 | 150 | 100 | 195 | 205 |
Current year quantities | 90 | 70 | 75 | 150 | 95 |
State the uses of Index Number
Construct the cost of living Index number for 2015 on the basis of 2012 from the following data using family budget method.
Commodity | Price | Weights | |
2012 | 2015 | ||
Rice | 250 | 280 | 10 |
Wheat | 70 | 85 | 5 |
Corn | 150 | 170 | 6 |
Oil | 25 | 35 | 4 |
Dhal | 85 | 90 | 3 |
Compute the consumer price index for 2015 on the basis of 2014 from the following data.
Commodities | Quantities | Prices in 2015 | Prices in 2016 |
A | 6 | 5.75 | 6.00 |
B | 6 | 5.00 | 8.00 |
C | 1 | 6.00 | 9.00 |
D | 6 | 8.00 | 10.00 |
E | 4 | 2.00 | 1.50 |
F | 1 | 20.00 | 15.00 |
Explain the meaning of index number.
State with reasons whether you agree or disagree with the following statement:
Index number measures changes in the price level only.
Choose the correct pair :
Group A | Group B | ||
1) | Price Index | a) | `(sump_1q_1)/(sump_0q_0) xx100` |
2) | Value Index |
b) |
`(sumq_1)/(sumq_0) xx 100` |
3) | Quantity Index | c) | `(sump_1q_1)/(sump_0q_1) xx100` |
4) | Paasche's Index | d) | `(sump_1)/(sump_0) xx 100` |
The base year's index of a selected variable is assumed as ______.