Advertisements
Advertisements
प्रश्न
Using the Lagrange’s mean value theorem determine the values of x at which the tangent is parallel to the secant line at the end points of the given interval:
`f(x) = (x - 2)(x - 7), x ∈ [3, 11]`
उत्तर
f(x) = (x – 2)(x – 7), x ∈ [3, 11]
f(x) is continuous in [3, 11]
f(x) is differentiable in (3, 11)
f(3) = (3 – 2)(3 – 7) = (1)(– 4) = – 4
f(11) = (11 – 2)(11 – 7) = (9)(4) = 36
∴ f(x) is defined in the given interval.
Given that the tangent is parallel to the secant line ofthe curve between x = 3 and x = 11.
∴ f'(c) = `("f"("b") - "f"("a"))/("b" - "a")`
2c – 9 = `(36 + 4)/(11 - 3)`
where f'(x) = 2x – 9
2x – 9 = `40/8` = 5
2c = 14
⇒ c = 7 ∈ (3, 11)
∴ x = 7
APPEARS IN
संबंधित प्रश्न
Explain why Rolle’s theorem is not applicable to the following functions in the respective intervals
`f(x) = |1/x|, x ∈ [- 1, 1]`
Explain why Rolle’s theorem is not applicable to the following functions in the respective intervals
`f(x)` = tan x, x ∈ [0, π]
Explain why Rolle’s theorem is not applicable to the following functions in the respective intervals
`f(x)` = x – 2 log x, x ∈ [2, 7]
Using the Rolle’s theorem, determine the values of x at which the tangent is parallel to the x-axis for the following functions:
`f(x) = (x^2 - 2x)/(x + 2), x ∈ [-1, 6]`
Using the Rolle’s theorem, determine the values of x at which the tangent is parallel to the x-axis for the following functions:
`f(x) = sqrt(x) - x/3, x ∈ [0, 9]`
Explain why Lagrange’s mean value theorem is not applicable to the following functions in the respective intervals:
`f(x) = (x + 1)/x, x ∈ [-1, 2]`
Using the Lagrange’s mean value theorem determine the values of x at which the tangent is parallel to the secant line at the end points of the given interval:
`f(x) = x^3 - 3x + 2, x ∈ [-2, 2]`
Show that the value in the conclusion of the mean value theorem for `f(x) = "A"x^2 + "B"x + "C"` on any interval [a, b] is `("a" + "b")/2`
A race car driver is kilometer stone 20. If his speed never exceeds 150 km/hr, what is the maximum kilometer he can reach in the next two hours
Suppose that for a function f(x), f'(x) ≤ 1 for all 1 ≤ x ≤ 4. Show that f(4) – f(1) ≤ 3
Does there exist a differentiable function f(x) such that f(0) = – 1, f(2) = 4 and f(x) ≤ 2 for all x. Justify your answer
Choose the correct alternative:
The number given by the Rolle’s theorem for the function x3 – 3x2, x ∈ [0, 3] is
Choose the correct alternative:
The number given by the Mean value theorem for the function `1/x`, x ∈ [1, 9] is