Advertisements
Advertisements
प्रश्न
Using the Remainder Theorem, factorise the following completely:
3x3 + 2x2 – 23x – 30
उत्तर
f(x) = 3x3 + 2x2 – 23x – 30
For x = –2,
f(x) = f(–2)
= 3(–2)3 + 2(–2)2 – 23(–2) – 30
= –24 + 8 + 46 – 30
= –54 + 54
= 0
Hence, (x + 2) is a factor of f(x).
3x2 – 4x – 15
`x + 2")"overline(3x^3 + 2x^2 - 23x - 30)`
3x3 + 6x2
– 4x2 – 23x
– 4x2 – 8x
– 15x – 30
– 15x – 30
0
∴ 3x3 + 2x2 – 23x – 30 = (x + 2)(3x2 – 4x – 15)
= (x + 2)(3x2 + 5x – 9x – 15)
= (x + 2)[x(3x + 5) – 3(3x + 5)]
= (x + 2)(3x + 5)(x – 3)
APPEARS IN
संबंधित प्रश्न
Find the remainder when x3 + 3x2 + 3x + 1 is divided by `x - 1/2`
Find the remainder when x3 + 3x2 + 3x + 1 is divided by x + π.
Use the Remainder Theorem to find which of the following is a factor of 2x3 + 3x2 – 5x – 6.
2x – 1
Divide the first polynomial by the second polynomial and find the remainder using remainder theorem.
(54m3 + 18m2 − 27m + 5) ; (m − 3)
Polynomials bx2 + x + 5 and bx3 − 2x + 5 are divided by polynomial x - 3 and the remainders are m and n respectively. If m − n = 0 then find the value of b.
Find without division, the remainder in the following:
5x2 - 9x + 4 is divided by (x - 2)
Find the values of a and b when the polynomials f(x)= 2x2 -5x +a and g(x)= 2x2 + 5x +b both have a factor (2x+1).
What number should be subtracted from x2 + x + 1 so that the resulting polynomial is exactly divisible by (x-2) ?
Find the remainder when 2x3 – 3x2 + 4x + 7 is divided by x – 2
Check whether p(x) is a multiple of g(x) or not
p(x) = x3 – 5x2 + 4x – 3, g(x) = x – 2