हिंदी

Using the Truth Table, Examine Whether the Statement Pattern (P → Q) ↔ (∼ P V Q) is a Tautology, a Contradiction Or a Contingency. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Using the truth table statement, examine whether the statement pattern (p → q) ↔ (∼ p v q) is a tautology, a contradiction or a contingency.

योग

उत्तर

 Truth Table : 

(1) (2) (3) (4) (5) (6)
P q ∼ p P → q ∼ p ∨ q (p → q) ↔ (∼ p ∨ q)
T T F T T T
T F F F F T
F T T T T T
F F T T T T

All entries in column (6) are T's. 
∴ Given statement is a Tautoiogy. 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2013-2014 (March)

APPEARS IN

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

State, whether the following statement is true or false. If false, give a reason.

Transpose of a square matrix is a square matrix.


Given : `[(x, y + 2),(3, z - 1)] = [(3, 1),(3, 2)]`; find x, y and z.


Solve for a, b and c; if `[(a, a - b),(b + c, 0)] = [(3, -1),(2, 0)]`


Wherever possible, write the following as a single matrix.

`[(2, 3, 4),(5, 6, 7)] - [(0, 2, 3),(6, -1, 0)]`


State, with reason, whether the following is true or false. A, B and C are matrices of order 2 × 2.

A2 – B2 = (A + B) (A – B)


State, with reason, whether the following is true or false. A, B and C are matrices of order 2 × 2.

(A – B)2 = A2 – 2A . B + B2


If M = `[(2,1),(1,-2)] `; find M2, M3 and M5.


Classify the following rnatrix : 

`|(2,1),(0 , 6),(8 , 7) |`


Classify the following matrix :

`[(7, 0)]`


Evaluate the following :

`|(1 , 1),(2 , 3)|  |(2 , 1),(1 , 4)|`


Evaluate the following :

`|(6 , 1),(3 , 1),(2 , 4)|  |(1 , -2 , 1),(2 , 1 , 3)|`


If A = `|(1,3),(3,2)|` and B = `|(-2 , 3),(-4 , 1)|`  find BA


Find the inverse of the matrix `[ (1, 2, 3), (1, 1, 5), (2, 4, 7)]` by using the adjoint method.
                                                 `


Find the adjoint of the matrix `"A" = [(2,-3),(3,5)]`


If A = `[(1,2,3), (2,k,2), (5,7,3)]` is a singular matrix then find the value of 'k'.


`[(2, -1),(5, 1)]`


Let `"M" xx [(1, 1),(0, 2)]` = [1 2] where M is a matrix.

  1. State the order of matrix M
  2. Find the matrix M

Choose the correct answer from the given four options :

If A = [aij]2×2 where aij = i + j, then A is equal to


Construct a matrix A = [aij]3 × 2 whose element aij is given by

aij = `(("i" - "j")^2)/(5 - "i")`


If A is a matrix of order m × 3, B is a matrix of order 3 × 2 and R is a matrix of order 5 × n such that AB = R, the value of m and n are ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×