हिंदी

Verify Lagrange'S Mean Value Theorem for the Following Function: `F(X ) = 2 Sin X + Sin 2x " on " [0, Pi]` - Mathematics

Advertisements
Advertisements

प्रश्न

Verify Lagrange's Mean Value Theorem for the following function:

`f(x ) = 2 sin x +  sin 2x " on " [0, pi]`

उत्तर

`f(x) = 2 sin x + sin 2x  " on " [0, pi]`

`f'(x) = 2cosx + 2cos 2x`

1) f(x) is differentiable on `[0, pi]`

2) Differentibility ⇒ Continuity

:. f(x) is continuous on `[0, pi]`

∴ LMVT is verified

then there exist `c in (0,pi)` such that

`f'(c) = (f(b) - f(a))/(b-a)`

`2cos c + 2 cos c = ((2sin pi + sin 2pi) - (2sin 0 +sin 0)) /(pi-0)`

`2 cos c + 2cos2c = 0`

`2cos c + 2(2cos^2 c - 1) = 0`

`2cos^2c + 2cos c -1 = 0`

`2 cos^2 c +  2 cos c - cos c - 1 = 0`

`2cos(cos c + 1) -1(cos c + 1) = 0`

`(cos c + 1)(2cos c - 1) = 0`

`cos c = -1, cos c = 1/2`

`c = 0 ∉ (0, pi)`

`c= pi/3  in  (0, pi`)`

`:. c =pi/3`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2014-2015 (March)

APPEARS IN

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Verify Lagrange’s mean value theorem for the function f(x)=x+1/x, x ∈ [1, 3]


Verify Rolle’s theorem for the function f (x) = x2 + 2x – 8, x ∈ [– 4, 2].


Verify Mean Value Theorem, if f (x) = x2 – 4x – 3 in the interval [a, b], where a = 1 and b = 4.


Verify Mean Value Theorem, if f (x) = x3 – 5x2 – 3x in the interval [a, b], where a = 1 and b = 3. Find all c ∈ (1, 3) for which f ′(c) = 0.


Verify Rolle’s theorem for the following function:

`f(x) = e^(-x) sinx " on"  [0, pi]`


f(x) = (x-1)(x-2)(x-3) , x ε[0,4], find if 'c' LMVT can be applied


Verify Langrange’s mean value theorem for the function:

f(x) = x (1 – log x) and find the value of  c in the interval [1, 2].


Verify Mean value theorem for the function f(x) = 2sin x + sin 2x on [0, π].


Verify Rolle’s theorem for the function, f(x) = sin 2x in `[0, pi/2]`.


The value of c in Rolle’s Theorem for the function f(x) = e x sinx, x ∈ π [0, π] is ______.


f(x) = x(x – 1)2 in [0, 1]


f(x) = `sqrt(4 - x^2)` in [– 2, 2]


Discuss the applicability of Rolle’s theorem on the function given by f(x) = `{{:(x^2 + 1",",  "if"  0 ≤ x ≤ 1),(3 - x",",  "if"  1 ≤ x ≤ 2):}`


Using Rolle’s theorem, find the point on the curve y = x(x – 4), x ∈ [0, 4], where the tangent is parallel to x-axis


f(x) = x3 – 2x2 – x + 3 in [0, 1]


Find a point on the curve y = (x – 3)2, where the tangent is parallel to the chord joining the points (3, 0) and (4, 1)


The value of c in Rolle’s theorem for the function f(x) = x3 – 3x in the interval `[0, sqrt(3)]` is ______.


For the function f(x) = `x + 1/x`, x ∈ [1, 3], the value of c for mean value theorem is ______.


Rolle’s theorem is applicable for the function f(x) = |x – 1| in [0, 2].


If x2 + y2 = 1, then ____________.


A value of c for which the Mean value theorem holds for the function f(x) = logex on the interval [1, 3] is ____________.


The value of c in mean value theorem for the function f(x) = (x - 3)(x - 6)(x - 9) in [3, 5] is ____________.


If the greatest height attained by a projectile be equal to the horizontal range, then the angle of projection is


If A, G, H are arithmetic, geometric and harmonic means between a and b respectively, then A, G, H are


Value of' 'c' of the mean value theorem for the function `f(x) = x(x - 2)`, when a = 0, b = 3/2, is


Let a function f: R→R be defined as

f(x) = `{(sinx - e^x",", if x < 0),(a + [-x]",", if 0 < x < 1),(2x - b",", if x > 1):}`

where [x] is the greatest integer less than or equal to x. If f is continuous on R, then (a + b) is equal to ______.


Let f(1) = –2 and f'(x) ≥ 4.2 for 1 ≤ x ≤ 6. The possible value of f(6) lies in the interval ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×