Advertisements
Advertisements
प्रश्न
Verify Lagrange’s mean value theorem for the following function:
`f(x) = x^2 - 3x - 1, x ∈ [(-11)/7 , 13/7]`.
उत्तर
The function f given as f(x) = x2 – 3x – 1 is a polynomial function. Hence, it is continuous on `[(-11)/7 , 13/7]` and differentiable on `((-11)/7, 13/7)`.
Thus, the function f satisfies the conditions of LMVT.
∴ there exists `c ∈ ((-11)/7, 13/7)` such that
f'(c) = `(f(13/7) - f((-11)/7))/(13/7 - ((-11)/7)` ...(1)
Now, f(x) = x2 – 3x – 1
∴ `f((-11)/7) = ((-11)/7)^2 - 3((-11)/7) - 1`
= `(121)/(49) + (33)/(7) - 1`
= `(121 + 231 - 49)/(49)`
= `(303)/(49)`
and `f(13/7) = (13/7)^2 - 3(13/7) - 1`
= `(169)/(49) - (39)/(7) - 1`
= `(169 - 273 - 49)/(49)`
= `(-153)/(49)`
Also, f'(x) = `d/dx(x^2 - 3x - 1)`
= 2x – 3 × 1 – 0
= 2x – 3
∴ f'(c) = 2c – 3
∴ from (1), 2c – 3 = `((-153)/49 - 303/49)/(13/7 11/7) `
∴ 2c – 3 = `-(456)/(49) xx (7)/(24)`
= `(-57)/(21)`
∴ 2c = `(-57)/(21) + 3`
= `(-57 + 63)/(21)`
= `(6)/(21)`
= `(2)/(7)`
∴ c = `(1)/(7)∈((-11)/7 , 13/7)`
Hence, Lagrange’s mean value theorem is verified.
APPEARS IN
संबंधित प्रश्न
Verify Lagrange’s mean value theorem for the following function:
f(x) = log x on [1, e]
Verify Lagrange’s mean value theorem for the following functions : f(x) = (x – 1)(x – 2)(x – 3) on [0, 4].
Verify Lagrange’s mean value theorem for the following functions : f(x) = 2x – x2, x ∈ [0, 1].
Verify Lagrange’s mean value theorem for the following functions : f(x) = `(x - 1)/(x - 3)` on [4, 5].
Verify Lagrange’s mean value theorem for the function f(x) = `sqrt(x + 4)` on the interval [0, 5].
Find the value of c for which the conclusion of the mean value theorem holds for the function f(x) = log x on the interval [1, 3]