हिंदी

Verify that the following is an AP, and then write its next three terms. 3,23,33,... - Mathematics

Advertisements
Advertisements

प्रश्न

Verify that the following is an AP, and then write its next three terms.

`sqrt(3), 2sqrt(3), 3sqrt(3),...`

योग

उत्तर

Here,

a= `sqrt(3)`

a2 = `2sqrt(3)`

a3 = `3sqrt(3)`

a2 – a1 = `2sqrt(3) - sqrt(3) = sqrt(3)`

a3 – a2 = `3sqrt(3) - 2sqrt(3)= sqrt(3)`

∵ a2 – a1 = a3 – a2 = `sqrt(3)`

Since, difference of successive terms are equal,

Hence, `sqrt(3), 2sqrt(3), 3sqrt(3),...` is an AP with common difference `sqrt(3)`

Therefore, the next three term will be,

a4 = a1 + 3d

= `sqrt(3) + 3(sqrt(3))`

= `4sqrt(3)`

a5 = a1 + 4d

= `sqrt(3) + 4sqrt(3)`

= `5sqrt(3)`

a6 = a1 + 5d

= `sqrt(3) + 5sqrt(3)`

= `6sqrt(3)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Arithematic Progressions - Exercise 5.3 [पृष्ठ ५२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
अध्याय 5 Arithematic Progressions
Exercise 5.3 | Q 2.(iii) | पृष्ठ ५२
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×