Advertisements
Advertisements
प्रश्न
What are the uses of statistical quality control?
उत्तर
(i) The role of statistical quality control is to collect and analyse relevant data for the purpose of detecting whether the process is under control or not.
(ii) The value of quality control lies in the fact that assignable causes in a process can be quickly detected.
In fact the variations are often discovered before the product becomes defective.
(iii) Statistical quality control is only diagnostic.
It tells us whether the standard is being maintained or not.
(iv) This technique is used in almost all production industries such as automobile textile, electrical equipment, biscuits, soaps, chemicals, petroleum products, etc.
(v) The purpose for which SQC are used in two-fold namely (a) process control (b) product control.
The main purpose of SQC is to device statistical techniques which would help in elimination of assignable causes and bring the production process under control.
APPEARS IN
संबंधित प्रश्न
Define Statistical Quality Control
Mention the types of causes for variation in a production process
Define chance cause
Define assignable cause
Define R chart
In a production process, eight samples of size 4 are collected and their means and ranges are given below. Construct mean chart and range chart with control limits.
Samples number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
`bar"X"` | 12 | 13 | 11 | 12 | 14 | 13 | 16 | 15 |
R | 2 | 5 | 4 | 2 | 3 | 2 | 4 | 3 |
In a certain bottling industry the quality control inspector recorded the weight of each of the 5 bottles selected at random during each hour of four hours in the morning.
Time | Weight in ml | ||||
8:00 AM | 43 | 41 | 42 | 43 | 41 |
9:00 AM | 40 | 39 | 40 | 39 | 44 |
10:00 AM | 42 | 42 | 43 | 38 | 40 |
11:00 AM | 39 | 43 | 40 | 39 | 42 |
Choose the correct alternative:
The quantities that can be numerically measured can be plotted on a
Choose the correct alternative:
How many causes of variation will affect the quality of a product?
The following are the sample means and I ranges for 10 samples, each of size 5. Calculate; the control limits for the mean chart and range chart and state whether the process is in control or not.
Sample Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Mean | 5.10 | 4.98 | 5.02 | 4.96 | 4.96 | 5.04 | 4.94 | 4.92 | 4.92 | 4.98 |
Range | 0.3 | 0.4 | 0.2 | 0.4 | 0.1 | 0.1 | 0.8 | 0.5 | 0.3 | 0.5 |