Advertisements
Advertisements
प्रश्न
What type of azeotrope is formed by positive deviation from Raoult's law ? Give an example.
उत्तर
A minimum-boiling azeotrope is formed by solutions showing a large positive deviation from Raoult’s law at a specific composition.
Example: An ethanol–water mixture containing approximately 95% ethanol by volume.
APPEARS IN
संबंधित प्रश्न
In non-ideal solution, what type of deviation shows the formation of maximum boiling azeotropes?
State Raoult’s law for the solution containing volatile components
An aqueous solution of 2% non-volatile solute exerts a pressure of 1.004 bar at the normal boiling point of the solvent. What is the molar mass of the solute?
Calculate the mass of a non-volatile solute (molar mass 40 g mol−1) which should be dissolved in 114 g octane to reduce its vapour pressure to 80%.
Benzene and toluene form ideal solution over the entire range of composition. The vapour pressure of pure benzene and toluene at 300 K are 50.71 mm Hg and 32.06 mm Hg respectively. Calculate the mole fraction of benzene in vapour phase if 80 g of benzene is mixed with 100 g of toluene.
For the reaction :
\[\ce{2NO_{(g)} ⇌ N2_{(g)} + O2_{(g)}}\];
ΔH = -heat
Kc = 2.5 × 102 at 298K
What will happen to the concentration of N2 if :
(1) Temperature is decreased to 273 K.
(2) The pressure is reduced
Match the following:
(i) | Colligative property | (a) | Polysaccharide |
(ii) | Nicol prism | (b) | Osmotic pressure |
(iii) | Activation energy | (c) | Aldol condensation |
(iv) | Starch | (d) | Polarimeter |
(v) | Acetaldehyde | (e) | Arrhenius equation |
On the basis of information given below mark the correct option.
(A) In bromoethane and chloroethane mixture intermolecular interactions of A–A and B–B type are nearly same as A–B type interactions.
(B) In ethanol and acetone mixture A–A or B–B type intermolecular interactions are stronger than A–B type interactions.
(C) In chloroform and acetone mixture A–A or B–B type intermolecular interactions are weaker than A–B type interactions.
Using Raoult’s law explain how the total vapour pressure over the solution is related to mole fraction of components in the following solutions.
\[\ce{NaCl(s) and H2O(l)}\]
The correct option for the value of vapour pressure of a solution at 45°C with benzene to octane in a molar ratio of 3 : 2 is ______
[At 45°C vapour pressure of benzene is 280 mm Hg and that of octane is 420 mm Hg. Assume Ideal gas]