Advertisements
Advertisements
प्रश्न
Which is the smallest number that must be multiplied to 77175 to make it a perfect cube?
योग
उत्तर
The prime factor of 77175 are
3 | 77175 |
3 | 25725 |
5 | 8575 |
5 | 1715 |
7 | 343 |
7 | 49 |
7 | 7 |
1 |
= 3 x 3 x 5 x 5 x 7 x 7 x 7
= (7 x 7 x 7) x 3 x 3 x 5 x 5
Clearly, 77175 must be multiplied by 3 x 5
= 15
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\sqrt[3]{480} = \sqrt[3]{3} \times 2 \times \sqrt[3]{. . .}\]
\[\sqrt[3]{} . . . = \sqrt[3]{7} \times \sqrt[3]{8}\]
\[\sqrt[3]{\frac{27}{125}} = \frac{. . .}{5}\]
\[\sqrt[3]{\frac{729}{1331}} = \frac{9}{. . .}\]
Evaluate:
\[\sqrt[3]{36} \times \sqrt[3]{384}\]
Making use of the cube root table, find the cube root
833 .
Find the smallest number by which 26244 may be divided so that the quotient is a perfect cube.
Find the cube root of -1331.
Find the cube root of 1728.
Using prime factorisation, find which of the following are perfect cubes.
128