हिंदी

While Calculating the Mean and Variance of 10 Readings, a Student Wrongly Used the Reading of 52 for the Correct Reading 25. He Obtained the Mean and Variance as 45 and 16 Respectively. - Mathematics

Advertisements
Advertisements

प्रश्न

While calculating the mean and variance of 10 readings, a student wrongly used the reading of 52 for the correct reading 25. He obtained the mean and variance as 45 and 16 respectively. Find the correct mean and the variance.

उत्तर

Given:

Number of observations, n = 10

Mean,

\[\bar {x}\]  = 45  Variance,
\[\sigma^2\]   = 16
Now,
Incorrect mean,
\[\bar {x}\]  = 45 
\[\Rightarrow \frac{\text{ Incorrect } \sum_{} x_i}{10} = 45\]
\[ \Rightarrow \text{ Incorrect }  \sum_{} x_i = 450\]
∴ Correct \[\sum_{} x_i = 450 - 52 + 25 = 423\]
⇒ Correct mean = \[\frac{\text{ Correct } \sum_{} x_i}{10} = \frac{423}{10} = 42 . 3\]
Incorrect variance,
\[\sigma^2\]  = 16
\[\Rightarrow 16 = \frac{\text{ Incorrect }  \sum_{} x_i^2}{10} - \left( 45 \right)^2 \]
\[ \Rightarrow \text{ Incorrect } \sum_{} x_i^2 = 10\left( 16 + 2025 \right) = 20410\]
∴ Correct 
\[\sum_{} x_i^2 = 20410 - \left( 52 \right)^2 + \left( 25 \right)^2 = 20410 - 2704 + 625 = 18331\] 
Now,
Correct variance = \[\frac{18331}{10} - \left( 42 . 3 \right)^2 = 1833 . 1 - 1789 . 29 = 43 . 81\]
 

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 32: Statistics - Exercise 32.6 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 32 Statistics
Exercise 32.6 | Q 9 | पृष्ठ ४२

वीडियो ट्यूटोरियलVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×