Advertisements
Advertisements
प्रश्न
Without expanding evaluate the following determinant:
`|(2, 7, 65),(3, 8, 75),(5, 9, 86)|`
उत्तर
Let D = `|(2, 7, 65),(3, 8, 75),(5, 9, 86)|`
Applying C3 → C3 – 9C2, we get
D = `|(2, 7, 2),(3, 8, 3),(5, 9, 5)|`
= 0 ...[∵ C1 and C3 are identical]
APPEARS IN
संबंधित प्रश्न
If `Delta = |(1,2,3),(3,1,2),(2,3,1)|` then `|(3,1,2),(1,2,3),(2,3,1)|` is
The value of the determinant `[(a,0,0),(0,b,0),(0,0,c)]^2` is
The value of `|(x,x^2 - yz,1),(y,y^2-zx,1),(z,z^2-xy,1)|` is
If `|(4,3),(3,1)|` = -5 then the value of `|(20,15),(15,5)|` is:
Show that `|(0,ab^2,ac^2),(a^2b,0,bc^2),(a^2c,b^2c,0)| = 2a^3b^3c^3`
Evaluation the following determination: `|(4,7),(-7, 0)| `
Evaluate the following determinant :
`|("a", "h", "g"),("h", "b", "f"),("g", "f", "c")|`
Without expanding evaluate the following determinant.
`|(1,a,a + c),(1,b,c + a),(1,c,a + b)|`
Find the value of x if `|(x, -1, 2),(2x, 1, -3),(3, -4, 5)| = 29`
Evaluate the following determinant :
`|(3,-5,2),(1,8,9),(3,7,0)|`
Find the value of x if `|(x,-1,2),(2x,1,-3),(3,-4,5)|` = 29
Find the value of x if `|(x,-1,2),(2x,1,-3),(3,-4,5)|` = 29
Evaluate the following determinant:
`|(4 ,7),(-7 ,0)|`
Evaluate the following determinant:
`|(3,-5,2),(1,8,9),(3,7,0)|`
Evaluate the following determinants:
`|(4, 7),(-7, 0)|`
Evaluate the following determinant:
`|(a,h ,g), (h,b,f), (g,f,c)|`
Without expanding evaluate the following determinant.
`|(1,a,b+c),(1,b,c+a),(1,c, a+b)|`
Evaluate the following determinant.
`|(3,-5,2),(1,8,9),(3,7,0)|`
Find the value of x if `|(x,-1,2),(2x,1,-3),(3,-4,5)|` = 29
Evaluate the following determinant:
`|(3, -5, 2), (1, 8, 9), (3, 7, 0)|`