हिंदी

Without using truth table prove that [(p ∧ q ∧ ∼ p) ∨ (∼ p ∧ q ∧ r) ∨ (p ∧ q ∧ r) ∨ (p ∧ ∼ q ∧ r) ≡ (p ∨ q) ∧ r -

Advertisements
Advertisements

प्रश्न

Without using truth table prove that

[(p ∧ q ∧ ∼ p) ∨ (∼ p ∧ q ∧ r) ∨ (p ∧ q ∧ r) ∨ (p ∧ ∼ q ∧ r) ≡ (p ∨ q) ∧ r

योग

उत्तर

[(p ∧ q ∧ ∼ p) ∨ (∼ p ∧ q ∧ r) ∨ (p ∧ q ∧ r) ∨ (p ∧ ∼ q ∧ r) 

= [(p ∧ ∼ p) ∧ q) ∨ (∼ p ∧ q ∧ r) ∨ (p ∧ q ∧ r) ∨ (p ∧ ∼ q ∧ r)   ...(Associative law)

= (F ∧ q) ∨ (∼ p ∧ q ∧ r) ∨ (p ∧ q ∧ r) ∨ (p ∧ ∼ q ∧ r)   ...(Complement law)

= F ∨ (∼ p ∧ q ∧ r) ∨ (p ∧ q ∧ r) ∨ (p ∧ ∼ q ∧ r)   ...(Identity law)

= (∼ p ∧ q ∧ r) ∨ (p ∧ q ∧ r) ∨ (p ∧ ∼ q ∧ r)   ...(Identity law)

= [∼ p ∧ (q ∧ r)] ∨ [p ∧ (q ∧ r)] ∨ (p ∧ ∼ q ∧ r)   ...(Associative law)

= [(∼ p ∨ p) ∧ (q ∧ r)] ∨ (p ∧ ∼ q ∧ r)   ...(Distributive law)

= [T ∧ (q ∧ r)] ∨ (p ∧ ∼ q ∧ r)   ...(Complement law)

= (q ∧ r) ∨ (p ∧ ∼ q ∧ r)   ...(Identity law)

= [q ∨ (p ∧ ∼ q)] ∧ r   ...(Distributive law)

= [(q ∨ p) ∧ (q ∨ ∼ q)] ∧ r  ...(Distributive law)

= [(q ∨ p) ∧ T] ∧ r   ...(Complement law)

= (q ∨ p) ∧ r   ...(Identity law)

= (p ∨ q) ∧ r  ...(Commutative law)

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×