Advertisements
Advertisements
प्रश्न
Write the conjugates of the following complex numbers: 3 – i
उत्तर
Conjugate of (3 – i) is (3 + i)
APPEARS IN
संबंधित प्रश्न
Write the conjugates of the following complex numbers: 3 + i
Write the conjugates of the following complex number:
`-sqrt(-5)`
Write the conjugates of the following complex numbers: 5i
Write the conjugates of the following complex numbers: `sqrt(5) - "i"`
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(-1)`. State the values of a and b:
(1 + 2i)(– 2 + i)
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(-1)`. State the values of a and b: `("i"(4 + 3"i"))/((1 - "i"))`
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(-1)`. State the values of a and b: `((2 + "i"))/((3 - "i")(1 + 2"i"))`
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(-1)`. State the values of a and b: `(2 + sqrt(-3))/(4 + sqrt(-3))`
Express the following in the form of a + ib, a, b ∈ R, i = `sqrt(-1)`. State the values of a and b: (2 + 3i)(2 – 3i)
Show that `(-1 + sqrt(3)"i")^3` is a real number.
Simplify the following and express in the form a + ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`
Show that `(−1 + sqrt(3) i)^3` is a real number.
Show that `(-1 + sqrt3"i")^3` is a real number.
Evaluate the following:
`i^35`
Show that `(-1 + sqrt3i)^3` is a real number.
Simplify the following and express in the form a+ib.
`(3i^5 + 2i^7 + i^9)/(i^6 + 2i^8 + 3i^18)`