Advertisements
Advertisements
प्रश्न
x तथा y दिए समीकरणों द्वारा, एक-दूसरे से प्राचलिक रूप में संबंधित हों, तो प्राचलों का विलोपन किए बिना, `dy/dx` ज्ञात कीजिए:
x = a `( theta - sin theta),` y = a `(1 + cos theta)`
उत्तर
यहाँ, c = a (θ - sinθ)
y = a (1 + cosθ)
(1) या (2) का t के संबंध में अवकलन करने पर, हम पाते हैं
`dx/(dθ) = a [1 - cos θ]`
`dy/(dθ) = a [-sin θ]`
= -a sin θ
`dy/dx = (dy/(dθ))/(dx/(dθ)) = (-1 sin θ)/ (a (1 - cos θ))`
= `(- sin θ)/ (1- cos θ) = (-2 sin θ //2 cos θ//2)/(2 sin^2 θ//2)`
= `-cot θ/2`
APPEARS IN
संबंधित प्रश्न
x तथा y दिए समीकरणों द्वारा, एक-दूसरे से प्राचलिक रूप में संबंधित हों, तो प्राचलों का विलोपन किए बिना, `dy/dx` ज्ञात कीजिए:
x = 2at2, y = at4
x तथा y दिए समीकरणों द्वारा, एक-दूसरे से प्राचलिक रूप में संबंधित हों, तो प्राचलों का विलोपन किए बिना, `dy/dx` ज्ञात कीजिए:
x = a cos `theta`, y = b cos `theta`
x तथा y दिए समीकरणों द्वारा, एक-दूसरे से प्राचलिक रूप में संबंधित हों, तो प्राचलों का विलोपन किए बिना, `dy/dx` ज्ञात कीजिए:
x = sin t, y = cos 2t
x तथा y दिए समीकरणों द्वारा, एक-दूसरे से प्राचलिक रूप में संबंधित हों, तो प्राचलों का विलोपन किए बिना, `dy/dx` ज्ञात कीजिए:
x = 4t, y = `4/t`
x तथा y दिए समीकरणों द्वारा, एक-दूसरे से प्राचलिक रूप में संबंधित हों, तो प्राचलों का विलोपन किए बिना, `dy/dx` ज्ञात कीजिए:
x `= cos theta - cos 2 theta, y = sin theta - sin 2 theta`
x तथा y दिए समीकरणों द्वारा, एक-दूसरे से प्राचलिक रूप में संबंधित हों, तो प्राचलों का विलोपन किए बिना, `dy/dx` ज्ञात कीजिए:
x `= (sin^3 t)/sqrt (cos 2 t)`, y `= (cos^3 t)/sqrt(cos 2 t)`
x तथा y दिए समीकरणों द्वारा, एक-दूसरे से प्राचलिक रूप में संबंधित हों, तो प्राचलों का विलोपन किए बिना, `dy/dx` ज्ञात कीजिए:
x = a `("cos t + log tan" t/2)` y = a sin t
x तथा y दिए समीकरणों द्वारा, एक-दूसरे से प्राचलिक रूप में संबंधित हों, तो प्राचलों का विलोपन किए बिना, `dy/dx` ज्ञात कीजिए:
x = a sec θ, y = b tan θ
यदि x = `sqrt (a^(sin^-1)t), y = (a^(cos^-1)t)` तो दर्शाइए कि `dy/dx = - y/x`
यदि f(x) = |x|3 है तो प्रमाणित कीजिए कि f'(x) का अस्तित्व है और इसे ज्ञात भी कीजिए।
गणितीय आगमन के सिद्धान्त के प्रयोग द्वारा सिद्ध कीजिए कि सभी धन पूर्णांक n के लिए `"d"/"dx" (x^"n")` = nxn-1 है।
sin (A + B) = sin A cos B + cos A sin B का प्रयोग करते हुए अवकलन द्वारा cosines के लिए योग सूत्र ज्ञात कीजिए।