Advertisements
Advertisements
प्रश्न
128 ∈ {y | the sum of all the positive factors of y is 2y}
पर्याय
True
False
उत्तर
This statement is False.
Explanation:
Given that: 128 ∈ {y|the sum of all positive factors of y is 2y}
∴ Factors of 128 are 1, 2, 4, 8, 16, 32, 64 and 128.
Sum of all the factors = 1 + 2 + 4 + 8 + 16 + 32 + 64 + 128
= 255 ≠ 2 × 128
Hence, the given statement is false.
APPEARS IN
संबंधित प्रश्न
Let A = {1, 2, 3, 4, 5, 6}. Insert the appropriate symbol ∈ or ∉ in the blank space:
5 _____ A
Which of the following collection are sets? Justify your answer:
The collection of all question in this chapter.
Which of the following collection are sets? Justify your answer:
The collection of prime integers.
If A = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], then insert the appropriate symbol ∈ or ∉ in each of the following blank space:
0 ...... A
Describe the following sets in Roster form:
{x ∈ N : x2 < 25};
Describe the following sets in Roster form:
{x ∈ R : x > x}.
Describe the following sets in Roster form:
{x : x is a prime number which is a divisor of 60}
Describe the following sets in set-builder form:
B={1,1/2 ,1/3, 1/4,1/5,...........};
Describe the following sets in set-builder form:
C = {0, 3, 6, 9, 12, ...}
Describe the following sets in set-builder form:
E = {0}
Describe the following sets in set-builder form:
{2, 4, 6, 8 .....}
Which of the following statements are correct?
Write a correct form of each of the incorrect statement.
\[a \in {\left\{ a \right\}, b}\]
Which of the following statement are correct?
Write a correct form of each of the incorrect statement.
\[\left\{ a, b \right\} \subset \left\{ a, \left\{ b, c \right\} \right\}\]
Let A = {a, b, {c, d}, e}. Which of the following statement are false and why?
\[\left\{ c, d \right\} \in A\]
Let A = {a, b, {c, d}, e}. Which of the following statement are false and why?
\[a \in A\]
Let A = {a, b, {c, d}, e}. Which of the following statements are false and why?
\[\left\{ a, b, e \right\} \in A\]
Let A = {a, b, {c, d}, e}. Which of the following statement are false and why?
\[\phi \in A\]
Let A = {{1, 2, 3}, {4, 5}, {6, 7, 8}}. Determine which of the following is true or false:
\[\left\{ 1, 2, 3 \right\} \subset A\]
Let A = {{1, 2, 3}, {4, 5}, {6, 7, 8}}. Determine which of the following is true or false:
\[\phi \in A\]
Write down all possible proper subsets each of the following set:
{1}.
Let U = {1, 2, 3, 4, 5, 6, 7, 8, 9}, A = {1, 2, 3, 4}, = {2, 4, 6, 8} and C = {3, 4, 5, 6}.
Find \[\left( A \cap C \right)'\]
Write the following interval in Set-Builder form:
[6, 12]
Write the following interval in Set-Builder form
[– 3, 4)
A college awarded 38 medals in volleyball, 15 in football, and 20 in basketball. The medals awarded to a total of 58 players and only 3 players got medals in all three sports. How many received medals in exactly two of the three sports?
Answer the following:
Write down the following set in set-builder form
{Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday}
Answer the following:
In a school there are 20 teachers who teach Mathematics or Physics. Of these, 12 teach Mathematics and 4 teach both Physics and Mathematics. How many teachers teach Physics?
Write the following sets in the roaster form:
D = {t | t3 = t, t ∈ R}
In a group of 50 students, the number of students studying French, English, Sanskrit were found to be as follows:
French = 17, English = 13, Sanskrit = 15 French and English = 09, English and Sanskrit = 4 French and Sanskrit = 5, English, French and Sanskrit = 3. Find the number of students who study French only
In a group of 50 students, the number of students studying French, English, Sanskrit were found to be as follows:
French = 17, English = 13, Sanskrit = 15 French and English = 09, English and Sanskrit = 4 French and Sanskrit = 5, English, French and Sanskrit = 3. Find the number of students who study Sanskrit only
In a group of 50 students, the number of students studying French, English, Sanskrit were found to be as follows:
French = 17, English = 13, Sanskrit = 15 French and English = 09, English and Sanskrit = 4 French and Sanskrit = 5, English, French and Sanskrit = 3. Find the number of students who study French and English but not Sanskrit