Advertisements
Advertisements
प्रश्न
65% of 111In sample decays in 4.2 d. What is its half-life?
उत्तर
Given: N0 = 100, N = 100 - 65 = 35, t = 4.2 d
To find: t1/2
Formulae:
- `lambda = 2.303/"t" log_10 ("N"_0/"N")`
- `"t"_(1//2) = 0.693/lambda`
Calculation:
1. `lambda = 2.303/"t" log_10 ("N"_0/"N")`
`lambda = 2.303/4.2 log_10 (100/35)`
= 0.548 × 0.456 = 0.2499 d-1
2. `"t"_(1//2) = 0.693/lambda`
`= 0.693/0.2499 = 2.773 "d"`
Half-life of 111In sample is 2.773 d.
APPEARS IN
संबंधित प्रश्न
What is gamma decay?
Sample of carbon obtained from any living organism has a decay rate of 15.3 decays per gram per minute. A sample of carbon obtained from very old charcoal shows a disintegration rate of 12.3 disintegrations per gram per minute. Determine the age of the old sample given the decay constant of carbon to be 3.839 × 10−12per second.
Describe alpha, beta and gamma decays and write down the formulae for the energies generated in each of these decays.
Complete the following equation describing nuclear decay.
\[\ce{_88^226Ra->_2^4\alpha {+}}\] ______.
Complete the following equation describing nuclear decay.
\[\ce{_8^19O->e^- { +}}\] _____
Complete the following equation describing nuclear decay.
\[\ce{_90^228Th->\alpha { +}}\] _____
Choose the correct option.
\[\ce{^60_27CO}\] decays with a half-life of 5.27 years to produce \[\ce{^60_28Ni}\]. What is the decay constant for such radioactive disintegration?
Derive the relationship between half-life and decay constant of a radioelement.
Decay constant of 197Hg is 0.017 h-1. What is its half-life?
The half-life of 18F is 110 minutes. What fraction of 18F sample decays in 20 minutes?
The half-life of 67Ga is 78 h. How long will it take to decay 12% of the sample of Ga?
A 3/4 of the original amount of radioisotope decays in 60 minutes. What is its half-life?
A sample of old wood shows 7.0 dps/g. If the fresh sample of tree shows 16.0 dps/g, how old is the given sample of wood? (Half-life of 14C is 5730 y)
In Hydrogen, the electron jumps from the fourth orbit to the second orbit. The wavenumber of the radiations emitted by an electron is ______
The decay constant λ of a certain radioactive material is 0.2166 per day. The average life τ of the radioactive material is ______
Show that half life period of radioactive material varies inversely to decay constant λ.
Obtain an expression for the half-lifetime of radioactive material. Hence state the relation between an average life and half lifetime of radioactive material.
A radioactive substance decays to (1/10)th of its original value in 56 days. Calculate its decay constant.
A radioactive nucleus emits 4 α-particles and 7 β-particles in succession. The ratio of number of neutrons of that of protons, is
[A = mass number, Z =atomic number]
A radioactive element has rate of disintegration 10,000 disintegrations per minute at a particular instant. After four minutes it become 2500 disintegrations per minute. The decay constant per minute is ______.
For radioactive substances, the fraction of its initial quantity (N0) which will disintegrate in its average lifetime is about ______.
(e = 2.71)
The activity of a radioactive substance decreases by a factor of 32 in one hour. The half-life of the substance (in min) is ______.
The half-life of a radioactive substance is 10 days. The time taken for the `(7/8)^"th"` of the sample of disintegrates is ______.
The graph obtained by plotting loge (A) [A is the activity of a radioactive sample] against t (time) out of the following is:
The half-life of \[\ce{^238_92U}\] undergoing ∝- -decay is 4.5 × 109 years. What is the activity of 1g sample of \[\ce{^238_92U}\]?