Advertisements
Advertisements
प्रश्न
A(3, 1), B(y, 4) and C(1, x) are vertices of a triangle ABC. P, Q and R are mid - points of sides BC, CA and AB respectively. Show that the centroid of ΔPQR is the same as the centroid ΔABC.
बेरीज
उत्तर
Centroid of ΔABC = `((3 + y + 1)/3, (1+ 4 + x)/3) = ((4 + y)/3, (5 + x)/3)`
P, Q and R are the mid points of the sides BC, CA and AB.
By mid - point formula, we get
`=> P = ((y + 1)/2, (4 + x)/2), Q = (4/2, (1 + x)/2) and R = ((3 + y)/2, 5/2)`
Centroid of a ΔPQR = `(((y + 1)/2 + 4/2 + (3 + y)/2)/3, ((4 + x)/2 - (1 + x)/2 + 5/2)/3)`
`= (((y + 1 + 4 + 3 + y)/2)/3, ((4 + x + 1 + x + 5)/2)/3)`
`= ((8 + 2y)/6, (10 + 2x)/6)`
`= ((4 + y)/3, (5 + x)/3)` ........(ii)
From (i) and (ii), we get
Centroid of a ∆ABC = Centroid of a ∆PQR
shaalaa.com
The Mid-point of a Line Segment (Mid-point Formula)
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?