Advertisements
Advertisements
प्रश्न
A boat can cover 10 km up the stream and 5 km down the stream in 6 hours. If the speed of the stream is 1.5 km/hr. find the speed of the boat in still water.
उत्तर
Distance up stream = 10km
and down stream = 5km
Total time is taken = 6hours
Speed of stream = 1.5km/hr
Let the speed of a boat in still water = x km/hr
According to the condition,
`(10)/(x - 1.5) + (5)/(x + 1.5)` = 6
⇒ 10x + 15 + 5x + 5x - 7.5 = 6(x - 15)(x + 15)
⇒ 15x + 7.5 = 6(x2 - 2.25)
⇒ 15x + 7.5 = 6x2 - 13.5
⇒ 6x2 - 15x - 13.5 - 7.5
⇒ 6x2 - 15x - 21 = 0
⇒ 2x2 - 5x - 7 = 0 ...(Dividing by 3)
⇒ 2x2 - 7x + 2x - 7 = 0 ...`{(2 xx (-7) = 14), (-14 = -7 xx 2),(-5 = -7 + 2):}`
⇒ x(2x - 7) + 1(2x - 7) = 0
⇒ (2x - 7)(x + 1) = 0
Either 2x - 7 = 0,
then 2x = 7
⇒ x = `(7)/(2)`
or
x + 1 = 0,
then x = -1
But it is not possible being negative
∴ x = `(7)/(2)` = 3.5
∴Speed of boat = 3.5km/hr.
APPEARS IN
संबंधित प्रश्न
Solve (i) x2 + 3x – 18 = 0
(ii) (x – 4) (5x + 2) = 0
(iii) 2x2 + ax – a2 = 0; where ‘a’ is a real number
Solve the following quadratic equations by factorization:
abx2 + (b2 – ac)x – bc = 0
Solve each of the following equations by factorization:
x(x – 5) = 24
Solve the following quadratic equations by factorization: \[\sqrt{3} x^2 - 2\sqrt{2}x - 2\sqrt{3} = 0\]
If the equation x2 + 4x + k = 0 has real and distinct roots, then
Solve the following equation: a2b2x2 + b2x - a2x - 1 = 0
Solve the following equation :
`("x" - 1)/("x" - 2) + ("x" - 3)/("x" - 4) = 3 1/3`
Solve the following quadratic equation by factorisation:
(2x + 3) (3x - 7) = 0
A farmer wishes to grow a 100 m2 rectangular vegetable garden. Since he has with him only 30 m barbed wire, he fences three sides of the rectangular garden letting compound wall of his house act as the fourth side fence. Find the dimensions of his garden.
If α and β are roots of the quadratic equation x2 – 7x + 10 = 0, find the quadratic equation whose roots are α2 and β2.