Advertisements
Advertisements
प्रश्न
A box contains 30 tickets, bearing only one number from 1 to 30 on each. If one ticket is drawn at random, find the probability of an event that the ticket drawn bears a complete square number.
उत्तर
Total number of tickets = 30
Number of tickets bearing perfect square number = 1, 4, 9, 16, 25
= 5
Therefore, required probability = `\text { Number of tickets bearing perfect number}/text { Total number of tickets}`
`=5/30`
`=1/6`
Hence, the probability that the ticket drawn bears a perfect square number is`=1/6`.
APPEARS IN
संबंधित प्रश्न
Two customers Shyam and Ekta are visiting a particular shop in the same week (Tuesday to Saturday). Each is equally likely to visit the shop on any day as on another day. What is the probability that both will visit the shop on
- the same day?
- consecutive days?
- different days?
A die is thrown once. Find the probability of getting an odd number.
One card is drawn from a well-shuffled deck of 52 cards. Find the probability of getting a king of red colour.
A bag contains 3 red balls, 5 black balls and 4 white balls. A ball is drawn at random from the bag. What is the probability that the ball drawn is Red
What is the probability that a number selected from the numbers 1, 2, 3, ..., 15 is a multiple
of 4?
A bag contains 5 white and 7 red balls. One ball is drawn at random. What is the
probability that ball drawn is white?
One card is drawn from a well shuffled deck of 52 cards. Find the probability of getting a red face card
A bag contains twenty Rs 5 coins, fifty Rs 2 coins and thirty Re 1 coins. If it is equally likely that one of the coins will fall down when the bag is turned upside down, what is the probability that the coin will neither be a Rs 5 coin nor be a Re 1 coin?
From a deck of 52 cards, all the face cards are removed and then the remaining cards are shuffled. Now one card is drawn from the remaining deck. Find the probability that the card drawn is a king of black color.
A box contains 150 bulbs out of which 15 are defective. It is not possible to just look at a bulb and tell whether or not it is defective. One bulb is taken out at random from this box. Calculate the probability that the bulb taken out is a defective one.
From a pack of 52 playing cards, all cards whose numbers are multiples of 3 are removed. A card is now drawn at random. What is the probability that the card drawn is a face card (King, Jack or Queen).
In a game of chance, a spinning arrow comes to rest at one of the numbers 1, 2, 3, 4, 5, 6, 7, 8. All these are equally likely outcomes. Find the probability that it will rest at an odd number.
A die is rolled twice. Find the probability that 5 will not come up either time.
A letter is chosen at random from the letters of the word ASSOCIATION. Find the probability that the chosen letter is a consonant.
A die is thrown 450 times and frequencies of the outcomes 1,2,3,4,5,6 were noted as given in the following table
outcomes | 1 | 2 | 3 | 4 | 5 | 6 |
Frequency | 73 | 70 | 74 | 75 | 80 | 78 |
(ii) a number < 4
A dice is thrown once. What is the probability that the number is even?
An integer is chosen between 0 and 100. What is the probability that it is not divisible by 7?
A lot consists of 48 mobile phones of which 42 are good, 3 have only minor defects and 3 have major defects. Varnika will buy a phone if it is good but the trader will only buy a mobile if it has no major defect. One phone is selected at random from the lot. What is the probability that it is acceptable to Varnika?
Following experiment have equally likely outcomes? Explain.
A baby is born. It is a boy or a girl.
Three rotten apples are accidentally mixed with twelve good ones. One apple is picked at random. What is the probability that it is a good one?