Advertisements
Advertisements
प्रश्न
A firm wants to maximize its profit. The total cost function is C = 370Q + 550 and revenue is R = 730Q-3Q2. Find the output for which profit is maximum and also find the profit amount at this output.
उत्तर
Profit function P=R-C
`P=(730Q-3Q^2)-(370Q+550)`
`=360Q-3Q^2-550`
`"dP"/"dQ"=360-6Q`
`(d^2P)/(dQ^2)=-6`
for maxima or minima `"dP"/"dQ"=0`
360-6Q=0
6Q=360
Q=60
`((d^2P)/(dQ^2))_(Q=60)=-6<0`
We get maximum at Q=60
`P_(max)=360xx60-3xx60^2-550`
=21600-10800-550
=10250
APPEARS IN
संबंधित प्रश्न
The total cost function of a firm is `C = x^2 + 75x + 1600` for output x. Find the output (x) for which average
cost is minimum. Is `C_A = C_M` at this output?
In a firm the cost function for output x is given as C = `"x"^3/3 - 20"x"^2 + 70 "x"`. Find the 3 output for which marginal cost (Cm) is minimum.
Solve the following assignment problem to minimize the cost:
Persons | Jobs | ||
I | II | III | |
A | 7 | 3 | 5 |
B | 2 | 7 | 4 |
C | 6 | 5 | 3 |
D | 3 | 4 | 7 |
Examine the function f(x) = `x + 25/x ` for maxima and minima
A manufacturer can sell x items at a price of ₹ (280 - x) each .The cost of producing items is ₹ (x2 + 40x + 35) Find the number of items to be sold so that the manufacturer can make maximum profit.
Cost of assembling x wallclocks is `( x^3/3 - 40x^2)` and labour charges are 500x. Find the number of wall clocks to be manufactured for which average cost and marginal cost attain their respective minimum.
Find the value of x for which the function `f(x) = x^3 - 3x^2 - 9x + 25` is increasing.
The average cost function associated with producing and marketing x units of an item is given by AC = 2x – 11 + `50/x`. Find the range of values of the output x, for which AC is increasing.
A television manufacturer finds that the total cost for the production and marketing of x number of television sets is C(x) = 300x2 + 4200x + 13500. If each product is sold for ₹ 8,400. show that the profit of the company is increasing.
A monopolist has a demand curve x = 106 – 2p and average cost curve AC = 5 + `x/50`, where p is the price per unit output and x is the number of units of output. If the total revenue is R = px, determine the most profitable output and the maximum profit.
Find the local minimum and local maximum of y = 2x3 – 3x2 – 36x + 10.
For the cost function C = 2000 + 1800x - 75x2 + x3 find when the total cost (C) is increasing and when it is decreasing.
The maximum value of f(x) = sin x is:
If f(x, y) is a homogeneous function of degree n, then `x (del "f")/(del x) + "y" (del "f")/(del y)` is equal to: