मराठी

A Pole Has to Be Erected at a Point on the Boundary of a Circular Park of Diameter 13 Meters in Such a Way that the Difference of Its Distances from Two Diametrically Opposite Fixed Gates a and B - Mathematics

Advertisements
Advertisements

प्रश्न

A pole has to be erected at a point on the boundary of a circular park of diameter 13 meters in such a way that the difference of its distances from two diametrically opposite fixed gates A and B on the boundary is 7 meters. Is it the possible to do so? If yes, at what distances from the two gates should the pole be erected?

थोडक्यात उत्तर

उत्तर

Let be the required location on the boundary of a circular park such that its distance from gate is x metre that is BP x metres.

Then, AP = x + 7

In the right triangle ABP we have by using Pythagoras theorem

AP2 + BP2 = AB2

(x + 7)2 + x2 = (13)2

x2 + 14x + 49 + x2 = 169

2x2 + 14x + 49 - 169 = 0

2x2 + 14x - 120 = 0

2(x2 + 7x - 60) = 0

x2 + 7x - 60 = 0

x2 + 12x - 5x - 60 = 0

x(x + 12) - 5(x - 12) = 0

(x + 12)(x - 5) = 0

x + 12 = 0

x = -12

Or

x - 5 = 0

x = 5

But the side of right triangle can never be negative

Therefore, x = 5

Hence, is at a distance of 5 metres from the gate B.

⇒ BP = 5m

Now, AP = (BP + 7)m = (5 + 7)m = 12 m

∴ The pole has to be erected at a distance 5 mtrs from the gate B and 12 m from the gate A.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Quadratic Equations - Exercise 4.10 [पृष्ठ ६४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 4 Quadratic Equations
Exercise 4.10 | Q 4 | पृष्ठ ६४
आरडी शर्मा Mathematics [English] Class 10
पाठ 4 Quadratic Equations
Exercise 4.13 | Q 8 | पृष्ठ ८०
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×