Advertisements
Advertisements
प्रश्न
A problem is given to three students whose chances of solving it are `1/4, 1/5` and `1/3` respectively. Find the probability that the problem is solved.
उत्तर
Let P(A) =`1/4 , "P"(bar"A") = 1 - 1/4 = 3/4`
P(B) = `1/5 , "P"(bar"B") = 1 - 1/5 = 4/5`
P(C) = `1/3 , "P"(bar"C") = 1- 1/3 = 2/3`
Probability (the problem is solved)
`= 1 - "P"(bar"A")."P"(bar"B")."P"(bar"C")`
`= 1 - 3/4 xx 4/5 xx 2/3`
`= 1 - 2/5 = 3/5`
APPEARS IN
संबंधित प्रश्न
A fair coin is tossed 8 times, find the probability of exactly 5 heads .
A pair of dice is thrown. What is the probability of getting an even number on the first die or a total of 8?
In a bolt factory, three machines A, B, and C manufacture 25%, 35% and 40% of the total production respectively. Of their respective outputs, 5%, 4% and 2% are defective. A bolt is drawn at random from the total production and it is found to be defective. Find the probability that it was manufactured by machine C.
A committee of 4 students is selected at random from a group consisting of 7 boys and 4 girls. Find the probability that there are exactly 2 boys in the committee, given that at least one girl must be there in the committee.
State the sample space and n(S) for the following random experiment.
A coin is tossed twice. If a second throw results in a tail, a die is thrown.
Find total number of distinct possible outcomes n(S) of the following random experiment.
5 balls are randomly placed into 5 cells, such that each cell will be occupied.
Find total number of distinct possible outcomes n(S) of the following random experiment.
6 students are arranged in a row for a photograph.
Two dice are thrown. Write favourable Outcomes for the following event.
P: Sum of the numbers on two dice is divisible by 3 or 4.
Two dice are thrown. Write favourable outcomes for the following event.
R: Sum of the numbers on two dice is a prime number.
Also, check whether Events P and Q are mutually exclusive and exhaustive.
Consider an experiment of drawing two cards at random from a bag containing 4 cards marked 5, 6, 7, and 8. Find the sample Space if cards are drawn with replacement.
Consider an experiment of drawing two cards at random from a bag containing 4 cards marked 5, 6, 7, and 8. Find the sample Space if cards are drawn without replacement.
From a group of 2 men (M1, M2) and three women (W1, W2, W3), two persons are selected. Describe the sample space of the experiment. If E is the event in which one man and one woman are selected, then which are the cases favourable to E?
There are 2 red and 3 black balls in a bag. 3 balls are taken out at random from the bag. Find the probability of getting 2 red and 1 black ball or 1 red and 2 black balls.
Prove that P(A) = `"P"("A" ∩ "B") + "P"("A" ∩ bar"B")`
Three dice are thrown at the sametime. Find the probability of getting three two’s, if it is known that the sum of the numbers on the dice was six.
Four cards are successively drawn without replacement from a deck of 52 playing cards. What is the probability that all the four cards are kings?
A lot of 100 watches is known to have 10 defective watches. If 8 watches are selected (one by one with replacement) at random, what is the probability that there will be at least one defective watch?
A die is thrown three times. Let X be ‘the number of twos seen’. Find the expectation of X.
A and B throw a pair of dice alternately. A wins the game if he gets a total of 6 and B wins if she gets a total of 7. It A starts the game, find the probability of winning the game by A in third throw of the pair of dice.
An urn contains m white and n black balls. A ball is drawn at random and is put back into the urn along with k additional balls of the same colour as that of the ball drawn. A ball is again drawn at random. Show that the probability of drawing a white ball now does not depend on k.
There are two bags, one of which contains 3 black and 4 white balls while the other contains 4 black and 3 white balls. A die is thrown. If it shows up 1 or 3, a ball is taken from the Ist bag; but it shows up any other number, a ball is chosen from the second bag. Find the probability of choosing a black ball.
By examining the chest X ray, the probability that TB is detected when a person is actually suffering is 0.99. The probability of an healthy person diagnosed to have TB is 0.001. In a certain city, 1 in 1000 people suffers from TB. A person is selected at random and is diagnosed to have TB. What is the probability that he actually has TB?
A bag contains (2n + 1) coins. It is known that n of these coins have a head on both sides where as the rest of the coins are fair. A coin is picked up at random from the bag and is tossed. If the probability that the toss results in a head is `31/42`, determine the value of n.
Two dice are thrown. If it is known that the sum of numbers on the dice was less than 6, the probability of getting a sum 3, is ______.
A box has 100 pens of which 10 are defective. What is the probability that out of a sample of 5 pens drawn one by one with replacement at most one is defective?
The letters of the word "ATTRACTION' are written randomly. The probability that no two T's appear together is
A box contains 10 balls, of which 3 are red, 2 are yellow, and 5 are blue. Five balls are randomly selected with replacement. Calculate the probability that fewer than 2 of the selected balls are red?
A bag contains 10 white and 3 black balls. Balls are drawn without replacement till all the black balls are drawn. What is the probability that this procedure will come to an end on the seventh draw?