Advertisements
Advertisements
प्रश्न
A quadratic polynomial having zeroes `-sqrt(5/2)` and `sqrt(5/2)` is _________.
पर्याय
`x^2 − 5sqrt2 x + 1`
8x2 − 20
15x2 − 6
`x^2 - 2sqrt5 x - 1`
MCQ
रिकाम्या जागा भरा
उत्तर
A quadratic polynomial having zeroes `-sqrt5/2` and `sqrt5/2` is 8x2 − 20.
Explanation:
Let α and β be the zeroes of the quadratic polynomial.
Then, α = `-sqrt(5/2)` and `β = sqrt(5/2)`
Sum of Zeroes (α + β) = `-sqrt(5/2) + sqrt(5/2)` = 0
Product of zeroes (αβ) = `-sqrt(5/2) xx sqrt(5/2) = -sqrt((5 xx 5)/(2 xx 2)) = -5/2`
We know that a quadratic polynomial with zeroes α and β is given by
`x^2 - (α + β)x + αβ`
= `x^2 - (0)x + (-5/2)`
= `x^2 - (5/2)`
= `(2 x^2 - 5)/2`
= 2x2 − 5
Multiply by 4, we get
= 8x2 − 20
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?