मराठी

A quadratic polynomial having zeroes -52 and 52 is _________. - Mathematics

Advertisements
Advertisements

प्रश्न

A quadratic polynomial having zeroes `-sqrt(5/2)` and `sqrt(5/2)` is _________.

पर्याय

  • `x^2 − 5sqrt2 x + 1`

  • 8x2 − 20

  • 15x2 − 6

  • `x^2 - 2sqrt5 x - 1`

MCQ
रिकाम्या जागा भरा

उत्तर

A quadratic polynomial having zeroes `-sqrt5/2` and `sqrt5/2` is 8x2 − 20.

Explanation:

Let α and β be the zeroes of the quadratic polynomial.

Then, α = `-sqrt(5/2)` and `β = sqrt(5/2)`

Sum of Zeroes (α + β) = `-sqrt(5/2) + sqrt(5/2)` = 0

Product of zeroes (αβ) = `-sqrt(5/2) xx sqrt(5/2) = -sqrt((5 xx 5)/(2 xx 2)) = -5/2`

We know that a quadratic polynomial with zeroes α and β is given by

`x^2 - (α + β)x + αβ`

= `x^2 - (0)x + (-5/2)`

= `x^2 - (5/2)`

= `(2 x^2 - 5)/2`

= 2x2 − 5

Multiply by 4, we get

= 8x2 − 20

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2024-2025 (March) Standard Board Sample Paper
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×