मराठी
तामिळनाडू बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान इयत्ता ११

A simple cipher takes a number and codes it, using the function f(x) = 3x − 4. Find the inverse of this function, determine whether the inverse is also a function and verify the symmetrical - Mathematics

Advertisements
Advertisements

प्रश्न

A simple cipher takes a number and codes it, using the function f(x) = 3x − 4. Find the inverse of this function, determine whether the inverse is also a function and verify the symmetrical property about the line y = x(by drawing the lines)

तक्ता
आलेख

उत्तर

Given f(x) = 3x – 4

Let y = 3x – 4

⇒ y + 4 = 3x

⇒ x = `(y + 4)/3`

Let g(y) = `(y + 4)/3`

gof(x) = g(f(x))

= g(3x – 4)

= `(3x - 4 + 4)/3`

= `(3x)/3`

gof(x) = x

and fog(y) = f(g(y))

= `f((y + 4)/3)`

= `3((y + 4)/3)`

= y + 4 – 4 = y

fog(y) = y

Hence g of = Ix and fog = Iy

This shows that f and g are bijections and inverses of each other.
Hence f is bijection and f–1(y) = `(y + 4)/3`

Replacing y by x we get f1(x) = `(x + 4)/3`

The line y = x

x 0 1 – 1 2 – 2 3 – 3
y 0 1 – 1 2 – 2 3 – 3

f(x) = The line y = 3x – 4

When x = 0 ⇒ y = 3 × 0 – 4 = – 4

When x = 1 ⇒ y = 3 × 1 – 4 = – 1

When x = – 1 ⇒ y = 3 × – 1 – 4 = – 7

When x = 2 ⇒ y = 3 × 2 – 4 = 2

When x = – 2 ⇒ y = 3 × – 2 – 4 = – 10

When x = 3 ⇒ y = 3 × 3 – 4 = 5

When x = – 3 ⇒ y = 3 × – 3 – 4 = – 13

x 0 1 – 1 2 – 2 3 – 3
y – 4 – 1 – 7 2 – 10 5 – 13

The line y = `(x + 4)/3`

When x = 0 ⇒ y = `(0 + 4)/3 = 4/3`

 When x = 1 ⇒ y = `(1 + 4)/3 = 5/3`

When x = – 1 ⇒ y = `(-1 + 4)/3` = 1

When x = 2 ⇒ y = `(2 + 4)/3` = 2

When x = – 2 ⇒ y = `(- 2 + 4)/3 = 2/3`

When x = 3 ⇒ y = `(3 + 4)/3 = 7/3`

When x = – 3 ⇒ y = `(- 3 + 4)/3 = 1/3`

x 0 1 – 1 2 – 2 3 – 3
y `4/5` `5/3` 1 2 `2/3` `7/3` `1/3`

From te graph, the lines y = 3x – 4 and y = `(x+ 4)/3` are symmertical about the line y = x.

shaalaa.com
Functions
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 1: Sets, Relations and Functions - Exercise 1.3 [पृष्ठ ३८]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
पाठ 1 Sets, Relations and Functions
Exercise 1.3 | Q 20 | पृष्ठ ३८

संबंधित प्रश्‍न

Write the values of f at − 4, 1, −2, 7, 0 if

f(x) = `{{:(- x + 4,  "if" - ∞ < x ≤ - 3),(x + 4,  "if" - 3 < x < -2),(x^2 - x,  "if" - 2 ≤ x < 1),(x - x^2,  "if"  1 ≤ x < 7),(0,  "otherwise"):}`


State whether the following relations are functions or not. If it is a function check for one-to-oneness and ontoness. If it is not a function, state why?

If A = {a, b, c} and f = {(a, c), (b, c), (c, b)}; (f : A → A)


Let A = {1, 2, 3, 4} and B = {a, b, c, d}. Give a function from A → B of the following:

neither one-to-one nor onto


Let A = {1, 2, 3, 4} and B = {a, b, c, d}. Give a function from A → B of the following:

not one-to-one but onto


Let A = {1, 2, 3, 4} and B = {a, b, c, d}. Give a function from A → B of the following:

one-to-one but not onto


Find the range of the function `1/(2 cos x - 1)`


If f, g : R → R are defined by f(x) = |x| + x and g(x) = |x| – x find g o f and f o g


If f, g, h are real valued functions defined on R, then prove that (f + g) o h = f o h + g o h. What can you say about f o (g + h)? Justify your answer


The weight of the muscles of a man is a function of his body weight x and can be expressed as W(x) = 0.35x. Determine the domain of this function


The owner of a small restaurant can prepare a particular meal at a cost of Rupees 100. He estimates that if the menu price of the meal is x rupees, then the number of customers who will order that meal at that price in an evening is given by the function D(x) = 200 − x. Express his day revenue, total cost and profit on this meal as functions of x


The formula for converting from Fahrenheit to Celsius temperatures is y = `(5x)/9 - 160/9`. Find the inverse of this function and determine whether the inverse is also a function


Choose the correct alternative:

If f(x) = |x − 2| + |x + 2|, x ∈ R, then


Choose the correct alternative:

The range of the function  `1/(1 - 2 sin x)` is


Choose the correct alternative:

The number of constant functions from a set containing m elements to a set containing n elements is


Choose the correct alternative:

The function f : [0, 2π] → [−1, 1] defined by f(x) = sin x is


Choose the correct alternative:

If the function f : [−3, 3] → S defined by f(x) = x2 is onto, then S is


Choose the correct alternative:

Let X = {1, 2, 3, 4}, Y = {a, b, c, d} and f = {(1, a), (4, b), (2, c), (3, d), (2, d)}. Then f is


Choose the correct alternative:

The inverse of f(x) = `{{:(x,  "if"  x < 1),(x^2,  "if"  1 ≤ x ≤ 4),(8sqrt(x),  "if"  x > 4):}` is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×