मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

A Simple Microscope is Rated 5 X for a Normal Relaxed Eye. What Will Be Its Magnifying Power for a Relaxed Farsighted Eye Whose Near Point is 40 Cm? - Physics

Advertisements
Advertisements

प्रश्न

A simple microscope is rated 5 X for a normal relaxed eye. What will be its magnifying power for a relaxed farsighted eye whose near point is 40 cm?

थोडक्यात उत्तर

उत्तर

For a simple microscope,
Magnification for a normal relaxed eye, m = 5
Least distant of distinct vision, D = 25 cm
Now,
Let the focal length be f.
The image will form at infinity, as the eye is relaxed.
The magnifying power  (m) of a simple microscope in normal adjustment is given by

`m =D/f`

`=> 5 = 25/f`

⇒ f= 5 cm

For the relaxed far-sighted eye, D = 40 cm.
Magnification (m):

`m=D/f =40/5 =8`

The magnifying power for a simple microscope is 8X.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Optical Instruments - Exercise [पृष्ठ ४३२]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
पाठ 19 Optical Instruments
Exercise | Q 5 | पृष्ठ ४३२

संबंधित प्रश्‍न

Draw a labelled ray diagram showing the formation of a final image by a compound microscope at least distance of distinct vision


A person with a normal near point (25 cm) using a compound microscope with the objective of focal length 8.0 mm and an eyepiece of focal length 2.5 cm can bring an object placed at 9.0 mm from the objective in sharp focus. What is the separation between the two lenses? Calculate the magnifying power of the microscope.


You are given the following three lenses. Which two lenses will you use as an eyepiece and as an objective to construct a compound microscope?

Lenses Power (D) Aperture (cm)
L1 3 8
L2 6 1
L3 10 1

Define the magnifying power of a compound microscope when the final image is formed at infinity. Why must both the objective and the eyepiece of a compound microscope has short focal lengths? Explain.


Does the magnifying power of a microscope depend on the colour of the light used? Justify your answer.


Draw the labelled ray diagram for the formation of image by a compound microscope.

Derive the expression for the total magnification of a compound microscope. Explain why both the objective and the eyepiece of a compound microscope must have short focal lengths.


An object is placed at a distance u from a simple microscope of focal length f. The angular magnification obtained depends


The focal length of the objective of a compound microscope if fo and its distance from the eyepiece is L. The object is placed at a distance u from the objective. For proper working of the instrument,
(a) L < u
(b) L > u
(c) fo < < 2fo
(d) > 2fo


The magnifying power of a converging lens used as a simple microscope is `(1+D/f).` A compound microscope is a combination of two such converging lenses. Why don't we have magnifying power `(1+D/f_0)(1+D/f_0)`?In other words, why can the objective not be treated as a simple microscope but the eyepiece can?


A compound microscope consists of an objective of focal length 1 cm and an eyepiece of focal length 5 cm. An object is placed at a distance of 0.5 cm from the objective. What should be the separation between the lenses so that the microscope projects an inverted real image of the object on a screen 30 cm behind the eyepiece?


Define the magnifying power of a microscope in terms of visual angle.


A convex lens of a focal length 5 cm is used as a simple microscope. Where should an object be placed so that the image formed by it lies at the least distance of distinct vision (D = 25 cm)?


In the case of a regular prism, in minimum deviation position, the angle made by the refracted ray (inside the prism) with the normal drawn to the refracting surface is ______.


An angular magnification of 30X is desired using an objective of focal length 1.25 cm and an eye piece of focal length 5 cm. How will you set up the compound microscope for the final image formed at least distance of distinct vision?


The near vision of an average person is 25 cm. To view an object with an angular magnification of 10, what should be the power of the microscope?


A compound microscope consists of two converging lenses. One of them, of smaller aperture and smaller focal length, is called objective and the other of slightly larger aperture and slightly larger focal length is called eye-piece. Both lenses are fitted in a tube with an arrangement to vary the distance between them. A tiny object is placed in front of the objective at a distance slightly greater than its focal length. The objective produces the image of the object which acts as an object for the eye-piece. The eye-piece, in turn, produces the final magnified image.

A compound microscope consists of an objective of 10X and an eye-piece of 20X. The magnification due to the microscope would be:


A compound microscope consists of two converging lenses. One of them, of smaller aperture and smaller focal length, is called objective and the other of slightly larger aperture and slightly larger focal length is called eye-piece. Both lenses are fitted in a tube with an arrangement to vary the distance between them. A tiny object is placed in front of the objective at a distance slightly greater than its focal length. The objective produces the image of the object which acts as an object for the eye-piece. The eye-piece, in turn, produces the final magnified image.

The focal lengths of the objective and eye-piece of a compound microscope are 1.2 cm and 3.0 cm respectively. The object is placed at a distance of 1.25 cm from the objective. If the final image is formed at infinity, the magnifying power of the microscope would be:


The focal lengths of the objective and the eye-piece of a compound microscope are 1.0 cm and 2.5 cm respectively. Find the tube length of the microscope for obtaining a magnification of 300.


In a compound microscope an object is placed at a distance of 1.5 cm from the objective of focal length 1.25 cm. If the eye-piece has a focal length of 5 cm and the final image is formed at the near point, find the magnifying power of the microscope.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×