मराठी

A spherical ball of salt is dissolving in water in such a manner that the rate of decrease of the volume at any instant is propotional to the surface. Prove that the radius is decreasing at a constan - Mathematics

Advertisements
Advertisements

प्रश्न

A spherical ball of salt is dissolving in water in such a manner that the rate of decrease of the volume at any instant is proportional to the surface. Prove that the radius is decreasing at a constant rate

बेरीज

उत्तर

Ball of salt is spherical

∴ Volume of ball, V = `4/3  pi"r"^3`

Where r = radius of the ball

As per the question, `"dV"/"dt" oo  "S"`

Where S = surface area of the ball

⇒ `"d"/"dt" (4/3 pi"r"^3) oo  4pi"r"^2`   .....[∵ S = 4πr2]

⇒ `4/3 pi * 3"r"^2 * "dr"/"dt" oo  4pi"r"^2`

⇒ `4pi"r"^2 * "dr"/"dt" = "K" * 4pi"r"^2`  ......(K = Constant of proportionality)

⇒ `"dr"/"dt" = "K" * 4pi"r"^2`

∴ `"dr"/"dt" = "K" * 1` = K

Hence, the radius of the ball is decreasing at constant rate.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Application Of Derivatives - Exercise [पृष्ठ १३५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 6 Application Of Derivatives
Exercise | Q 1 | पृष्ठ १३५

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

If y = f (u) is a differential function of u and u = g(x) is a differential function of x, then prove that y = f [g(x)] is a differential function of x and `dy/dx=dy/(du) xx (du)/dx`


Find the rate of change of the area of a circle with respect to its radius r when r = 3 cm.


A stone is dropped into a quiet lake and waves move in circles at the speed of 5 cm/s. At the instant when the radius of the circular wave is 8 cm, how fast is the enclosed area increasing?


The volume of a sphere is increasing at the rate of 3 cubic centimeter per second. Find the rate of increase of its surface area, when the radius is 2 cm


Find the rate of change of the total surface area of a cylinder of radius r and height h, when the radius varies?


Find the rate of change of the volume of a sphere with respect to its diameter ?


Find the rate of change of the volume of a ball with respect to its radius r. How fast is the volume changing with respect to the radius when the radius is 2 cm?


The total cost C (x) associated with the production of x units of an item is given by C (x) = 0.007x3 − 0.003x2 + 15x + 4000. Find the marginal cost when 17 units are produced ?


The money to be spent for the welfare of the employees of a firm is proportional to the rate of change of its total revenue (Marginal revenue). If the total revenue (in rupees) recieved from the sale of x units of a product is given by R(x) = 3x2 + 36x + 5, find the marginal revenue, when x = 5, and write which value does the question indicate ?


If y = 7x − x3 and x increases at the rate of 4 units per second, how fast is the slope of the curve changing when x = 2?


The radius of a cylinder is increasing at the rate 2 cm/sec. and its altitude is decreasing at the rate of 3 cm/sec. Find the rate of change of volume when radius is 3 cm and altitude 5 cm.


The volume of a spherical balloon is increasing at the rate of 25 cm3/sec. Find the rate of change of its surface area at the instant when radius is 5 cm ?


The length x of a rectangle is decreasing at the rate of 5 cm/minute and the width y is increasing at the rate of 4 cm/minute. When x = 8 cm and y = 6 cm, find the rates of change of the area of the rectangle.


A circular disc of radius 3 cm is being heated. Due to expansion, its radius increases at the rate of 0.05 cm/sec. Find the rate at which its area is increasing when radius is 3.2 cm.


If a particle moves in a straight line such that the distance travelled in time t is given by s = t3 − 6t2+ 9t + 8. Find the initial velocity of the particle ?


Find the surface area of a sphere when its volume is changing at the same rate as its radius ?


The altitude of a cone is 20 cm and its semi-vertical angle is 30°. If the semi-vertical angle is increasing at the rate of 2° per second, then the radius of the base is increasing at the rate of


The coordinates of the point on the ellipse 16x2 + 9y2 = 400 where the ordinate decreases at the same rate at which the abscissa increases, are


Each side of an equilateral triangle is increasing at the rate of 8 cm/hr. The rate of increase of its area when side is 2 cm, is


A man 2 metres tall walks away from a lamp post 5 metres height at the rate of 4.8 km/hr. The rate of increase of the length of his shadow is


In a sphere the rate of change of surface area is


Evaluate:  `int (x(1+x^2))/(1+x^4)dx`


For the curve y = 5x – 2x3, if x increases at the rate of 2 units/sec, then how fast is the slope of curve changing when x = 3?


The rate of change of volume of a sphere with respect to its surface area, when the radius is 2 cm, is ______.


The rate of change of volume of a sphere is equal to the rate of change of the radius than its radius equal to ____________.


Let y = f(x) be a function. If the change in one quantity 'y’ varies with another quantity x, then which of the following denote the rate of change of y with respect to x.


What is the rate of change of the area of a circle with respect to its radius when, r = 3 cm


The radius of a circle is increasing uniformly at the rate of 3 cm per second. Find the rate at which the area of the circle is increasing when the radius is 10 cm.


A ladder 5 m long is leaning against a wall. The bottom of the ladder is pulled along the ground, away from the wall, at the rate of 2 cm/s. How fast is its height on the wall decreasing when the foot of the ladder is 4 m away from the wall?


If the circumference of circle is increasing at the constant rate, prove that rate of change of area of circle is directly proportional to its radius.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×