Advertisements
Advertisements
प्रश्न
A toroidal solenoid with air core has an average radius of 15 cm, area of cross-section 12 cm2 and has 1200 turns. Calculate the self-inductance of the toroid. Assume the field to be uniform across the cross-section of the toroid.
उत्तर
The self inductance of a toroidal solenoid is given by \[L = \frac{\mu_0 N^2 A}{2\pi r}\]
Here, N = number of turns
A = area of cross-section
r = average radius
\[\therefore L = \frac{4\pi \times {10}^{- 7} \times \left( 1200 \right)^2 \times 12 \times {10}^{- 4}}{2\pi \times 15 \times {10}^{- 2}}\]
\[ = 230 . 4 \times {10}^{- 5} H\]
APPEARS IN
संबंधित प्रश्न
The currents flowing in the two coils of self-inductance L1 = 16 mH and L2 = 12 mH are increasing at the same rate. If the power supplied to the two coil is equal, find the ratio of induced voltages ?
A plot of magnetic flux (Φ) versus current (I) is shown in the figure for two inductors A and Β. Which of the two has larger value of self inductance?
A magnetic flux of 8 × 10−4 weber is linked with each turn of a 200-turn coil when there is an electric current of 4 A in it. Calculate the self-inductance of the coil.
What are the values of the self-induced emf in the circuit of the previous problem at the times indicated therein?
An e.m.f. of 10 volt is produced by a self inductance when the current changes at a steady rate from 6 A to 4 A in 1 millisecond. The value of self inductance is ____________.
Magnetic flux of 12 microweber is linked with a coil. When current of 3 mA flows through it, the self inductance of the coil is ____________.
A resistance of 100 `Omega`, inductor of self-inductance`(4/pi^2)` H and a capacitor of unknown capacitance are connected in series to an a.c. source of 200 V and 50 Hz. When the current and voltage are in phase, the capacitance and power dissipated is respectively ____________.
The self-inductance associated with a coil is independent of ______.
An average induced emf of 0.20 V appears in a coil when the current in it is changed from 5A in one direction to 5A in the opposite direction in 0.20 sec. Find the self induction of the coil.
A current of 1A flows through a coil when it is connected across a DC battery of 100V. If the DC battery is replaced by an AC source of 100 V and angular frequency of 100 rad s-1, the current reduces to 0.5 A. Find
- the impedance of the circuit.
- self-inductance of coil.
- Phase difference between the voltage and the current.