Advertisements
Advertisements
प्रश्न
A train standing at the outer signal of a railway station blows a whistle of frequency 400 Hz still air. The train begins to move with a speed of 10 ms–1 towards the platform. What is the frequency of the sound for an observer standing on the platform? (sound velocity in air = 330 ms–1)
उत्तर
Frequency of train standing at the outer signal, vo = 400 Hz
Speed of train moving towards the platform, vs = 10 ms–1
The velocity of sound in air, va = 300 ms–1
Apparent frequency of the sound for an observer standing on the platform,
⇒ v' = `v_a/((v_a - v_s)) v_o`
⇒ v' = `(330 xx 400)/((330 - 10))` Hz
⇒ v' = `(330 xx 400)/320` Hz
⇒ v' = `825/2` Hz
⇒ v' = 412.5 Hz
APPEARS IN
संबंधित प्रश्न
A narrow sound pulse (for example, a short pip by a whistle) is sent across a medium. (a) Does the pulse have a definite (i) frequency, (ii) wavelength, (iii) speed of propagation? (b) If the pulse rate is 1 after every 20 s, (that is the whistle is blown for a split of second after every 20 s), is the frequency of the note produced by the whistle equal to 1/20 or 0.05 Hz
Answer briefly.
What is Doppler effect?
State the expression for apparent frequency when listener is stationary and source is moving towards the listener.
What is meant by the Doppler effect?
Discuss the following case-
Observer in motion and Source at rest.
- Observer moves towards Source
- Observer resides away from the Source
The speed of a wave in a certain medium is 900 m/s. If 3000 waves passes over a certain point of the medium in 2 minutes, then compute its wavelength?
The difference between the apparent frequency of a source of sound as perceived by the observer during its approach and recession is 2% of the frequency of the source. If the speed of sound in air is 300 ms-1, then the velocity of the source is ______.
A train whistling at constant frequency is moving towards a station at a constant speed V. The train goes past a stationary observer on the station. The frequency n ′ of the sound as heard by the observer is plotted as a function of time t (figure). Identify the expected curve.
A racing car moving towards a cliff sounds its horn. The sound reflected from the cliff has a pitch one octave higher than the actual sound of the horn. If V is the velocity of sound, the velocity of the car is ______.
A whistle producing sound waves of frequencies 9500 Hz and above is approaching a stationary person with speed v ms-1. The velocity of sound in air is 300 ms-1. If the person can hear frequencies up to a maximum of 10,000 HZ, the maximum value of v up to which he can hear the whistle is ______.