मराठी
कर्नाटक बोर्ड पी.यू.सी.पीयूसी विज्ञान इयत्ता ११

A Train Starts from Rest and Moves with a Constant Acceleration of 2.0 M/S2 for Half Minute. the Brakes Are Then Applied and the Train Comes to One Minute Find the Total Distance Moved by the Train . - Physics

Advertisements
Advertisements

प्रश्न

A train starts from rest and moves with a constant acceleration of 2.0 m/s2 for half a minute. The brakes are then applied and the train comes to rest in one minute. Find the total distance moved by the train .

टीपा लिहा

उत्तर

Initial velocity, u = 0
Acceleration, a = 2 m/s2
Let the final velocity be v before the brakes are applied.
Now,           
= 30 s
u + at
v = 0 + 2 × 30
 ⇒ v = 60 m/s

\[s_1 = ut + \frac{1}{2}a t^2\]
\[\Rightarrow s_1 = \frac{1}{2} \times 2 \times \left( 30 \right)^2 = 900 \text{ m } \]
When the brakes are applied:
u' = 60 m/s
v' = 0
t = 1 min = 60 s
Acceleration:
\[a' = \frac{\left( v - u \right)}{t} = \frac{\left( 0 - 60 \right)}{60} = - 1 \text{ m } / s^2 \]
\[ s_2 = \frac{v^2 - u^2}{2a'} = \frac{0^2 - {60}^2}{2\left( - 1 \right)} = 1800 \text{ m } \]

s1 + s2 = 1800 + 900 = 2700 m
⇒ s = 2.7 km

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Rest and Motion: Kinematics - Exercise [पृष्ठ ५२]

APPEARS IN

एचसी वर्मा Concepts of Physics Vol. 1 [English] Class 11 and 12
पाठ 3 Rest and Motion: Kinematics
Exercise | Q 15.1 | पृष्ठ ५२

संबंधित प्रश्‍न

Two trains A and B of length 400 m each are moving on two parallel tracks with a uniform speed of 72 km h–1 in the same direction, with A ahead of B. The driver of B decides to overtake A and accelerates by 1 m/s2. If after 50 s, the guard of B just brushes past the driver of A, what was the original distance between them?


The velocity of a particle is towards west at an instant. Its acceleration is not towards west, not towards east, not towards north and towards south. Give an example of this type of motion .


A person travelling at 43.2 km/h applies the brake giving a deceleration of 6.0 m/s2 to his scooter. How far will it travel before stopping?

 

A bullet travelling with a velocity of 16 m/s penetrates a tree trunk and comes to rest in 0.4 m. Find the time taken during the retardation.

 

A bullet going with speed 350 m/s enters a concrete wall and penetrates a distance of 5.0 cm before coming to rest. Find the deceleration.

 

A particle starting from rest moves with constant acceleration. If it takes 5.0 s to reach the speed 18.0 km/h find the distance travelled by the particle during this period.


Complete the following table:

Car Model Driver X
Reaction time 0.20 s
Driver Y
Reaction time 0.30 s
A (deceleration on hard braking = 6.0 m/s2) Speed = 54 km/h
Braking distance
a = ............
Total stopping distance
b = ............
Speed = 72 km/h
Braking distance
= ...........
Total stopping distance
d = ............
B (deceleration on hard braking = 7.5 m/s2) Speed = 54 km/h
Breaking distance
e = ...........
Total stopping distance
f = ............
Speed 72 km/h
Braking distance
g = .............
Total stopping distance
h = ............

 


A police jeep is chasing a culprit going on a motorbike. The motorbike crosses a turning at a speed of 72 km/h. The jeep follows it at a speed of 90 km/h, crossing the turning ten seconds later than the bike. Assuming that they travel at constant speeds, how far from the turning will the jeep catch up with the bike?

 

A person sitting on the top of a tall building is dropping balls at regular intervals of one second. Find the positions of the 3rd, 4th and 5th ball when the 6th ball is being dropped.


An elevator is descending with uniform acceleration. To measure the acceleration, a person in the elevator drops a coin at the moment the elevator starts. The coin is 6 ft above the floor of the elevator at the time it is dropped. The person observes that the coin strikes the floor in 1 second. Calculate from these data the acceleration of the elevator.


A ball is thrown horizontally from a point 100 m above the ground with a speed of 20 m/s. Find the time it takes to reach the ground .


A person standing on the top of a cliff 171 ft high has to throw a packet to his friend standing on the ground 228 ft horizontally away. If he throws the packet directly aiming at the friend with a speed of 15.0 ft/s, how short will the packet fall?


A bomb is dropped from a plane flying horizontally with uniform speed. Show that the bomb will explode vertically below the plane. Is the statement true if the plane flies with uniform speed but not horizontally?

 

A boy standing on a long railroad car throws a ball straight upwards. The car is moving on the horizontal road with an acceleration of 1 m/s2 and the projection velocity in the vertical direction is 9.8 m/s. How far behind the boy will the ball fall on the car?

 

A person is standing on a truck moving with a constant velocity of 14.7 m/s on a horizontal road. The man throws a ball in such a way that it returns to the truck after the truck has moved 58.8 m. Find the speed and the angle of projection  as seen from the road. 


A swimmer wishes to cross a 500 m wide river flowing at 5 km/h. His speed with respect to water is 3 km/h.  Find the shortest possible time to cross the river.


An aeroplane has to go from a point A to another point B, 500 km away due 30° east of north. A wind is blowing due north at a speed of 20 m/s. The air-speed of the plane is 150 m/s. Find the direction in which the pilot should head the plane to reach the point B.   


Two friends A and B are standing a distance x apart in an open field and wind is blowing from A to B. A beat a drum and B hears the sound t1 time after he sees the event. A and B interchange their positions and the experiment is repeated. This time B hears the drum timer after he sees the event. Calculate the velocity of sound in still air v and the velocity of wind u. Neglect the time light takes in travelling between the friends. 

 

Six particles situated at the corner of a regular hexagon of side a move at a constant speed v. Each particle maintains a direction towards the particle at the next corner. Calculate the time the particles will take to meet each other.  


A ball is dropped from a building of height 45 m. Simultaneously another ball is thrown up with a speed 40 m/s. Calculate the relative speed of the balls as a function of time.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×