Advertisements
Advertisements
प्रश्न
आपके स्कूल में खेल-कूद क्रियाकलाप आयोजित करने के लिए, एक आयताकार मैदान ABCD में, चूने से परस्पर 1 m की दूरी पर पंक्तियाँ बनाई गई हैं। AD के अनुदिश परस्पर 1 m की दूरी पर 100 गमले रखे गए हैं, जैसा कि आकृति में दर्शाया गया है। निहारिका दूसरी पंक्ति में AD के `1/4` भाग के बराबर की दूरी दौड़ती है और वहाँ एक हरा झंडा गाड़ देती है। प्रीत आठवीं पंक्ति में AD के `1/5` भाग के बराबर की दूरी दौड़ती है और वहाँ एक लाल झंडा गाड़ देती है। दोनों झंडों के बीच की दूरी क्या है? यदि रश्मि को एक नीला झंडा इन दोनों झंडों को मिलाने वाले रेखाखंड पर ठीक आधी दूरी (बीच में) पर गाड़ना हो तो उसे अपना झंडा कहाँ गाड़ना चाहिए?
उत्तर
यह देखा जा सकता है कि निहारिका ने 2वीं पंक्ति के आरंभिक बिंदु से AD की दूरी के `1/4` अर्थात `(1×100/4)` मीटर = 25 मीटर पर हरा झंडा लगाया। इसलिए, इस बिंदु G के निर्देशांक (2, 25) हैं। इसी तरह, प्रीत ने 8वीं पंक्ति के आरंभिक बिंदु से AD की दूरी के `1/5` अर्थात `(1×100/5)` मीटर = 20 मीटर पर लाल झंडा लगाया। इसलिए, इस बिंदु R के निर्देशांक (8, 20) हैं।
दूरी सूत्र का उपयोग करके इन झंडों के बीच की दूरी = GR
GR = `sqrt((x_2 - x_1)^2 + (y_2 - y_1)^2)`
= `sqrt((8-2)^2+(25-20)^2)`
= `sqrt(36+25)`
= `sqrt61` m
जिस बिंदु पर रश्मि को अपना नीला झंडा लगाना चाहिए वह इन बिंदुओं को मिलाने वाली रेखा का मध्य-बिंदु है। मान लें कि यह बिंदु A (x, y) है।
x = `(2+8)/2`
y = `(25+20)/2`
x = `10/2`
x = 5
y = `45/2`
y = 22.5
अतः, A(x, y) = (5, 22.5)
अतः, रश्मि को अपना नीला झंडा 5वीं पंक्ति में 22.5 मीटर पर लगाना चाहिए।
APPEARS IN
संबंधित प्रश्न
बिंदु A (2, 7) और B(-4, -8) को जोड़ने वाले रेखाखंड AB के त्रिभाजक बिंदुओं के निर्देशांक ज्ञात कीजिए।
यदि बिंदु A(4, -3) और B(8, 5) हो तो रेखाखंड AB को 3ः1 के अनुपात में विभाजित करने वाले बिंदु के निर्देशांक ज्ञात कीजिए।
P(4, 2, –6) और Q(10, –16, 6) के मिलाने वाली रेखा खंड PQ को सम त्रि-भाजित करने वाले बिंदुओं के निर्देशांक ज्ञात कीजिए।
एक समचतुर्भुज का क्षेत्रफल ज्ञात कीजिए जिसके शीर्ष, इसी क्रम में, (3, 0), (4, 5), (-1, 4) और (-2, -1) हैं। [संकेत: समचतुर्भुज का क्षेत्रफल = `1/2` (उसके विकर्णों का गुणनफल)]
बिंदु A के निर्देशांक ज्ञात कीजिए, जहाँ AB एक वृत्त का व्यास है जिसका केंद्र (2, -3) है तथा B के निर्देशांक (1, 4) हैं।
वह अनुपात ज्ञात कीजिए जिसमें बिंदुओं A(1, -5) और B(-4, 5) को मिलाने वाला रेखाखंड x-अक्ष से विभाजित होता है। इस विभाजन बिंदु के निर्देशांक भी ज्ञात कीजिए।
बिंदुओं (-3, 10) और (6, -8) को जोड़ने वाले रेखाखंड को बिंदु (-1, 6) किस अनुपात में विभाजित करता है?
उस बिंदु के निर्देशांक ज्ञात कीजिए, जो बिंदुओं (-1, 7) और (4, -3) को मिलाने वाले रेखाखंड को 2 : 3 के अनुपात में विभाजित करता है।
बिंदुओं (4, -1) और (-2, -3) को जोड़ने वाले रेखाखंड को सम-त्रिभाजित करने वाले बिंदुओं के निर्देशांक ज्ञात कीजिए।
यदि बिंदु A(4, –3) तथा B(8, 5) हो, तो रेखाखंड AB को 3 : 1 के अनुपात में विभाजित करने वाले बिंदु P का निर्देशांक ज्ञात करने के लिए निम्न कृति पूर्ण करो:
कृति:
x = `(mx_2 + nx_1)/square`
∴ x = `(3 xx 8 + 1 xx 4)/(3 + 1)`
∴ x = `(square + 4)/4`
∴ x = `square`,
y = `square/(m + n)`
∴ y = `(3 xx 5 + 1 xx (-3))/(3 + 1)`
∴ y = `(square - 3)/4`
∴ y = `square`