Advertisements
Advertisements
प्रश्न
Answer the following:
Find the coefficient of x6 in the expansion of e2x using series expansion
बेरीज
उत्तर
ex = `1 + x/(1!) + x^2/(2!) + x^3/(3!) + x^4/(4!) + x^5/(5!) + x^6/(6!) + ...`
∴ e2x = `1 + ((2x))/(1!) + (2x)^2/(2!) + (2x)^3/(3!) + (2x)^4/(4!) + (2x)^5/(5!) + (2x)^6/(6!)+ ...`
`=1 + 2/(1!)x + 2^2/(2!)x^2 + 2^3/(3!)x^3 + 2^4/(4!)x^4 + 2^5/(5!)x^5 + 2^6/(6!)x^6 + ...`
∴ coefficient of x6 = `2^6/(6!)`
= `(2 xx 2 xx 2 xx 2 xx 2 xx 2)/(6 xx 5 xx 4 xx 3 xx 2 xx 1)`
= `4/45`
shaalaa.com
Power Series
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Sequences and Series - Miscellaneous Exercise 2.2 [पृष्ठ ४२]