Advertisements
Advertisements
प्रश्न
Answer the following question based on the P-T phase diagram of carbon dioxide:
At what temperature and pressure can the solid, liquid and vapour phases of CO2 co-exist in equilibrium?
उत्तर १
The P-T phase diagram for CO2 is shown in the following figure.
C is the triple point of the CO2 phase diagram. This means that at the temperature and pressure corresponding to this point (i.e., at –56.6°C and 5.11 atm), the solid, liquid, and vaporous phases of CO2 co-exist in equilibrium.
उत्तर २
At the triple point, temperature = – 56.6 °C and pressure = 5.11 atm.
APPEARS IN
संबंधित प्रश्न
Answer the following questions based on the P–T phase diagram of CO2:
What happens when CO2 at 4 atm pressure is cooled from room temperature at constant pressure?
Answer the following questions based on the P–T phase diagram of CO2:
Describe qualitatively the changes in a given mass of solid CO2 at 10 atm pressure and temperature –65 °C as it is heated up to room temperature at constant pressure.
Answer the following questions based on the P–T phase diagram of CO2:
Describe qualitatively the changes in a given mass of solid CO2 at 10 atm pressure and temperature –65 °C as it is heated up to room temperature at constant pressure.
Answer the following questions based on the P–T phase diagram of CO2:
CO2 is heated to a temperature 70 °C and compressed isothermally. What changes in its properties do you expect to observe?
A ‘thermacole’ icebox is a cheap and efficient method for storing small quantities of cooked food in summer in particular. A cubical icebox of side 30 cm has a thickness of 5.0 cm. If 4.0 kg of ice is put in the box, estimate the amount of ice remaining after 6 h. The outside temperature is 45 °C, and coefficient of thermal conductivity of thermacole is 0.01 J s–1 m–1 K–1. [Heat of fusion of water = 335 × 103 J kg–1]
Explain why a body with large reflectivity is a poor emitter
A metal block of heat capacity 80 J°C−1 placed in a room at 20°C is heated electrically. The heater is switched off when the temperature reaches 30°C. The temperature of the block rises at the rate of 2°C s−1 just after the heater is switched on and falls at the rate of 0.2°C s−1 just after the heater is switched off. Assume Newton's law of cooling to hold.
- Find the power of the heater.
- Find the power radiated by the block just after the heater is switched off.
- Find the power radiated by the block when the temperature of the block is 25°C.
- Assuming that the power radiated at 25°C represents the average value in the heating process, find the time for which the heater was kept on.
Answer the following question based on the P-T phase diagram of carbon dioxide:
What is the effect of decrease of pressure on the fusion and boiling point of CO2?
Mark the correct options:
- A system X is in thermal equilibrium with Y but not with Z. System Y and Z may be in thermal equilibrium with each other.
- A system X is in thermal equilibrium with Y but not with Z. Systems Y and Z are not in thermal equilibrium with each other.
- A system X is neither in thermal equilibrium with Y nor with Z. The systems Y and Z must be in thermal equilibrium with each other.
- A system X is neither in thermal equilibrium with Y nor with Z. The system Y and Z may be in thermal equilibrium with each other.
During summers in India, one of the common practice to keep cool is to make ice balls of crushed ice, dip it in flavoured sugar syrup and sip it. For this a stick is inserted into crushed ice and is squeezed in the palm to make it into the ball. Equivalently in winter, in those areas where it snows, people make snow balls and throw around. Explain the formation of ball out of crushed ice or snow in the light of P–T diagram of water.