मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Answer the following question. What is the magnitude of the charge on an electron? - Physics

Advertisements
Advertisements

प्रश्न

Answer the following question.

What is the magnitude of the charge on an electron?

एका वाक्यात उत्तर

उत्तर

The magnitude of the charge on an electron is 1.6 × 10−19 C.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 10: Electrostatics - Exercises [पृष्ठ २०६]

APPEARS IN

बालभारती Physics [English] 11 Standard Maharashtra State Board
पाठ 10 Electrostatics
Exercises | Q 2. (i) | पृष्ठ २०६

संबंधित प्रश्‍न

Mark out the correct options.


Two large conducting plates are placed parallel to each other with a separation of 2⋅00 cm between them. An electron starting from rest near one of the plates reaches the other plate in 2⋅00 microseconds. Find the surface charge density on the inner surfaces.


Two particles A and B with charges q and 2q, respectively, are placed on a smooth table with a separation d. A third particle C is to be clamped on the table in such a way that the  particles A and B remain at rest on the table under electrical forces. What should be the charge on C and where should it be clamped? 


The electric force experienced by a charge of 1.0 × 10−6 C is 1.5 × 10−3 N. Find the magnitude of the electric field at the position of the charge.


A positively charged glass rod is brought close to a metallic rod isolated from ground. The charge on the side of the metallic rod away from the glass rod will be ______.


Two small spheres 18 cm apart have equal negative charges and repel each other with the force of 6 × 10-3 N. Find the total charge on both spheres.


Two small conducting spheres of equal radius have charges +10 µC and -20 µC respectively and placed at a distance R from each other experience force F1· If they are brought in contact and separated to the same distance, they experience force F2. The ratio of F1 to F2 is ____________.


A conducting sphere of radius 0.104 m has an unknown charge. If the electric field at 0.20 m from the centre of the sphere is 1.5 x 103 NC-1 and points radially inward, what is the electric flux?


Ionization of a neutral atom is the ______.


In figure two positive charges q2 and q3 fixed along the y-axis, exert a net electric force in the + x-direction on a charge q1 fixed along the x-axis. If a positive charge Q is added at (x, 0), the force on q______.

(1)
(2)

Charge is ______.

If a body is negatively charged, then it has ______.

If an object possesses an electric charge, it is said to be electrified or ... A ... When it has no charge, it is said to be ... B ... Here, A and B refer to ______.

When some charge is transferred to ...A... it readily gets distributed over the entire surface of ... A... If some charge is put on ... B..., it stays at the same place. Here, A and B refer to ______.

Electric charge is uniformly distributed along a long straight wire of radius 1 mm. The charge per cm length of the wire is Q coulomb. Another cylindrical surface of radius 50 cm and length 1 m symmetrically enclose the wire as shown in the figure. The total electric flux passing through the cylindrical surface is ______.


When a glass rod is rubbed with silk, it ______. 


Which of the following graphs shows the variation of electric field E due to a hollow spherical conductor of radius R as a function of distance from the centre of the sphere?


Two identical metallic spheres A and B when placed at certain distance in air repel each other with a force of F. Another identical uncharged sphere C is first placed in contact with A and then in contact with B and finally placed at midpoint between spheres A and B. The force experienced by sphere C will be:


Two identical conducting spheres with negligible volume have 2.1 nC and -0.1 nC charges, respectively. They are brought into contact and then separated by a distance of 0.5 m. The electrostatic force acting between the spheres is ______ × 10-9N.

[Given: 4πε0 = `1/(9xx10^9)` SI unit]


A straight infinitely long cylinder of radius R0 = 10 cm is uniformly charged with a surface charge density σ = + 10-12 C/m2. The cylinder serves as a source of electrons, with the velocity of the emitted electrons perpendicular to its surface. Electron velocity must be ______ × 105 m/s to ensure that electrons can move away, from the axis of the cylinder to a distance greater than r = 103 m.


The electrostatic potential inside a charged spherical ball is given by `Phi = ar^2 + b`, where r is the distance from the centre a, and b are constants. Then the charge density inside the ball is ______.


A charge of magnitude 3e and mass 2m is moving in an electric field E. The acceleration imparted to the charge is ______.


The potential at a point x (measured in µm) due to some charges situated on the X-axis is given by v(x) = `20/((x^2 - 4)` V. The electric field E at x = 4 µm is given by ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×